|
- 2015
板翅式换热器锯齿型翅片参数的遗传算法优化研究
|
Abstract:
针对目前锯齿型板翅式换热器未能同时优化多参数,或者大多优化研究存在对经验关联式依赖的问题,提出了利用Kriging响应面来近似目标函数与设计变量之间的关系、应用遗传算法对锯齿型板翅式换热器翅片结构参数的优化方法。在维持翅片通道雷诺数为800时,把换热器的最大j因子、最小f因子和最大FTEF因子作为3个单目标函数,对翅片的翅片高度h、翅片间距s、翅片厚度t和翅片节距l进行了优化研究。研究结果表明:翅片高度h与翅片间距s对换热器综合性能FTEF因子呈正增长,而翅片厚度t和翅片节距l呈负增长;在翅片高度为9.5 mm、翅片间距为2.2 mm、翅片厚度为0.1 mm和翅片节距为3 mm时,换热器性能最佳;结合Kriging响应面的遗传算法克服了传统优化方法对经验关联式的依赖。该研究结果可以指导锯齿型板翅式换热器的优化设计。
In the current optimization for plate fin heat exchanger with offset fins, simultaneous multi??parameter optimization is rarely considered, or researches usually depend on empirical relations. A strategy by genetic algorithm (GA) combined with Kriging response surface is proposed, where the Kriging response surface provides an approximate relationship between the objective function and design variables. The fin height h, fin space s, fin thickness t and interrupted length j of offset fins are taken as four optimization parameters, while maximum j factor, minimum f factor and maximum FTEF factor as three single objective functions at Reynolds number of 800. The results show that the effects of the fin height and fin space on the overall performance FTEF factor are positive and the effects of the fin thickness and the interrupted length are negative; the heat exchanger performance reaches the optimum as fin height h=9.5 mm, fin space s=2.1 mm, fin thickness t=0.1 mm and interrupted length l=3 mm; the genetic algorithm combined with Kriging response surface eliminates the dependence on empirical relations
[1] | [15]MOCHIZUKI S, YAGI Y, YANG W J. Transport phenomena in stacks of interrupted parallel??plate surfaces [J]. Exp Heat Transfer, 1987, 1(2): 127??140. |
[2] | [16]DUBROVSKY E V, VASILIEV V Y. Enhancement of convective heat transfer in rectangular ducts of interrupted surfaces [J]. Int J of Heat Mass Transfer, 1988, 31(4): 807??818. |
[3] | [7]MISHRA M, DAS P K, SUNIL S. Second law based optimization of crossflow plate??fin heat exchanger design using genetic algorithm [J]. Appl Therm Eng, 2009, 29(14): 2983??2989. |
[4] | [10]NAJAFI H, NAJAFI B, HOSEINPOORI P. Energy and cost optimization of a plate and fin heat exchanger using genetic algorithm [J]. Appl Therm Eng, 2011, 31(10): 1839??1847. |
[5] | [11]KAYS W M, LONDON A L. Compact heat exchanger [M]. 2nd ed. New York, USA: McGraw??Hill, 1964: 97??112. |
[6] | [12]WIETING A R. Empirical correlations for heat transfer and flow friction characteristics of rectangular offset??fin plate??fin heat exchangers [J]. J Heat Transfer, 1975, 97(3): 488??490. |
[7] | [13]JOSHI H M, WEBB R L. Heat transfer and friction in the offset??strip fin heat exchangers [J]. Int J of Heat Mass Transfer, 1987, 30(1): 69??84. |
[8] | [14]MANSON S V. Correlations of heat transfer data and of friction data for interrupted plane fins staggered in successive rows, NACA tech note 2237 [R]. Washington, DC, USA: National Advisory Committee for Aeronautics, 1950. |
[9] | [4]XIE G N, SUNDEN B, WANG Q W. Optimization of compact heat exchangers by a genetic algorithm [J]. Appl Therm Eng, 2008, 28(8/9): 895??906. |
[10] | XIE Gongnan, WANG Qiuwang. Geometrical optimization design of plate??fin heat exchanger using genetic algorithm [J]. Proceedings of the CSEE, 2006, 26(7): 53??57. |
[11] | [17]MANGLIK R M, BERGLES A E. Heat transfer and pressure drop correlations for the rectangular offset strip fin compact heat exchanger [J]. Exp Therm Fluid Sci, 1995, 10(2): 171??180. |
[12] | [18]KIM M S, LEE J, YOOK S J, et al. Correlations and optimization of a heat exchanger with offset??strip fins [J]. Int J of Heat Mass Transfer, 2011, 54(9/10): 2073??2079. |
[13] | [19]YANG Y J, LI Y Z. General prediction of the thermal hydraulic performance for plate??fin heat exchanger with offset strip fins [J]. Int J of Heat Mass Transfer, 2014, 78(7): 860??870. |
[14] | [20]WANG G G, SHAN S. Review of metamodeling techniques in support of engineering design optimization [J]. Journal of Mechanical Design, 2007, 129(4): 370??380. |
[15] | [21]SACKS J, WELCH W J, MITCHELL T J, et al. Design and analysis of computer experiments [J]. Statistical Science, 1989, 4(4): 409??435. |
[16] | [5]谢公南, 王秋旺. 遗传算法在板翅式换热器尺寸优化中的应用 [J]. 中国电机工程学报, 2006, 26(7): 53??57. |
[17] | [6]郭江峰, 许明田, 程林. 基于耗散数最小的板翅式换热器优化设计 [J]. 工程热物理学报, 2011, 32(5): 827??831. |
[18] | [8]GHOLAP A K, KHAN J A. Design and multi??objective optimization of heat exchangers for refrigerators [J]. Applied Energy, 2007, 84(12): 1226??1239. |
[19] | [9]HILBERT R, JANIGA G, BARON R, et al. Multi??objective shape optimization of a heat exchanger using parallel genetic algorithms [J]. Int J of Heat Mass Transfer, 2006, 49(15/16): 2567??2577. |
[20] | [1]SHAH R K, WEBB L. Compact and enhanced heat exchangers: heat exchangers theory and practice [M]. Washington, DC, USA: Hemisphere, 1983: 425??468. |
[21] | [2]HOLLAND J H. Outline for a logical theory of adaptive systems [J]. Journal of the Association for Computing Machinery, 1962, 9(3): 297??314. |
[22] | [3]PENG H, LING X. Optimal design approach for the plate??fin heat exchangers using neural networks cooperated with genetic algorithms [J]. Appl Therm Eng 2008, 28(5/6): 642??650. |
[23] | GUO Jiangfeng, XU Mingtian, CHENG Lin. Optimization design of plate??fin heat exchanger based on entransy dissipation number minimization [J]. Journal of Engineering Thermophysics, 2011, 32(5): 827??831. |