全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

多重边融合复杂网络动态演化模型
Dynamic Evolution Model of United Complex Networks with Multi??Links

DOI: 10.7652/xjtuxb201609021

Keywords: 多重边融合复杂网络,交织型层级复杂网络,动态演化,饱和度,吸引因子
united complex network with multi??links
,interlaced layered complex network,dynamic evolution,saturation,attraction factor

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对多个性质不同、相互融合的复杂网络演化过程时变非均衡,网络结构层级交织,特点规律难以测度的问题,提出了一个多重边融合复杂网络动态演化模型。首先,定义多重边融合复杂网络的相关概念,分析融合关系与层级关系的转化过程,按照节点、边性质的差异,拆分融合节点和重合边,将多重边融合复杂网络转化成交织型层级复杂网络;其次,定义节点的度值饱和度和吸引因子,提出交织型层级复杂网络的演化算法和局域世界演化模型,讨论了4种典型的节点演化情形,运用平均场方法分析了模型演化的度分布规律;最后进行了数值仿真分析,结果表明,演化过程结束后,未达到饱和状态的节点度值服从指数分布且误差不超过6%,已达到饱和状态的节点度值服从其连接容量的分布规律且误差不超过3%,网络交织系数与最高的新增节点概率、初始边数呈正相关性。研究结果验证了模型的可行性和有效性,为探索多重边融合复杂网络演化过程与规律提供了新的思路和方法,在交通网、通信网、社交网等结构与动力学研究方面具有良好的应用前景。
Aiming at the problem that during the evolution process of interconnected complex networks, there exist nonuniform time??varying property and layered interlaced network structure, leading to the difficulty in measuring their characteristics and rules, a dynamic evolution model of united complex network with multi??links (MLUCN) is proposed. Firstly, we define some related concepts of MLUCN, analyze the conversion process of fusion and hierarchy relationship, and split fusion nodes and overlapped edges according to the property difference between nodes and edges, then the MLUCN is transformed to interlaced layered complex networks (ILCN). Secondly, the node degree saturation and attraction factor are defined. The evolution algorithm and local??world evolution model for ILCN are put forward, and four situations of node evolution are discussed. The mean field method is used to analyze the degree distribution rule during evolution. Finally, numerical simulation is performed. The results show that the node degree not reaching saturation obeys the exponential distribution with an error no more than 6%; the node degree reaching saturation obeys their connection capacities’ distribution with an error no more than 3%; the network weaving coefficients have a positive correlation with the highest probability of new node and the initial number of connected edges. The results verified the feasibility and effectiveness of the proposed model. This model provides a new idea and method for exploring MLUCN evolution process and rule, and also has good application prospects in the structure and dynamics researches of transportation network, communication network and social network, etc

References

[1]  [1]CASTET J F, SALEH J H. Interdependent multi??layer networks: modeling and survivability analysis with applications to space??based networks [J]. PLOS ONE, 2013, 8(4): e60402.
[2]  [2]WANG Zhen, SZOLNOKI A, PERC M. Self??organization towards optimally interdependent networks by means of coevolution [J]. New Journal of Physics, 2014, 16: 033041.
[3]  [3]高洋, 李丽香, 彭海朋, 等. 多重边复杂网络系统的稳定性分析 [J]. 物理学报, 2008, 57(3): 1444??1451.
[4]  GAO Yang, LI Lixiang, PENG Haipeng, et al. Stability analysis of complex networks with multi??links [J]. Acta Phys Sin, 2008, 57(3): 1444??1451.
[5]  [13]WANG Baokui, PEI Zhenhua, WANG Long. Evolutionary dynamics of cooperation on interdependent networks with the Prisoner’s Dilemma and snowdrift game [J]. EPL, 2014, 107(5): 58006.
[6]  [7]AOKI T, YAWATA K, AOYAGI T. Self??organization of complex networks as a dynamical system [J]. Physical Review: E, 2015, 91(1): 012908.
[7]  [8]STIPPINGER M. Enhancing resilience of interdependent networks by healing [J]. Physica: AStatistical Mechanics and Its Applications, 2014, 416: 481??487.
[8]  [12]孙钦东, 孙亚红, 管晓宏, 等. 动态短信通信复杂网络演化模型研究 [J]. 西安交通大学学报, 2009, 43(6): 5??9.
[9]  SUN Qindong, SUN Yahong, GUAN Xiaohong, et al. A dynamic evolution model of short message complex network [J]. Journal of Xi’an Jiao Tong University, 2009, 43(6): 5??9.
[10]  [14]向海涛, 梁世东. 双复杂网络间的演化博弈 [J]. 物理学报, 2015, 64(1): 018902.
[11]  XIANG Haitao, LIANG Shidong. Evolutionary gambling dynamic for two growing complex networks [J]. Acta Physica Sinica, 2015, 64(1): 018902.
[12]  [9]沈迪, 李建华, 张强, 等. 交织型层级复杂网 [J]. 物理学报, 2014, 63(19): 190201.
[13]  SHEN Di, LI Jianhua, ZHANG Qiang, et al. Interlacing layered complex networks [J]. Acta Physica Sinica, 2014, 63(19): 190??201.
[14]  [11]邵峰晶, 孙仁诚, 李淑静, 等. 多子网复合复杂网络及其运算研究 [J]. 复杂系统与复杂性科学, 2012, 9(4): 20??25.
[15]  SHAO Fengjing, SUN Rencheng, LI Shujing, et al. Research of multi??subnet composited complex network and its operation [J]. Complex Systems and Complexity Science, 2012, 9(4): 20??25.
[16]  [4]JIANG J, LI W, CAI X. The effect of interdependence on the percolation of interdependent networks [J]. Physica: AStatistical Mechanics and Its Applications, 2014, 410: 573??581.
[17]  [5]田立新, 贺莹环, 黄益. 一种新型二分网络类局域世界演化模型 [J]. 物理学报, 2012, 61(22): 228903.
[18]  TIAN Lixin, HE Yinghuan, HUANG Yi. A novel local??world??like evolving bipartite network model [J]. Acta Physica Sinica, 2012, 61(22): 228903.
[19]  [6]陶少华, 赵会洋, 平源, 等. 基于吸引因子的无尺度网络演化模型研究 [J]. 复杂系统与复杂性科学, 2008, 5(2): 88??92.
[20]  TAO Shaohua, ZHAO Huiyang, PING Yuan, et al. Attractive factors based scale??free networks evolving model [J]. Complex Systems and Complexity Science, 2008, 5(2): 88??92.
[21]  [10]SANTOS M D, DOROGOVTSEV S N, MENDES J F. Biased imitation in coupled evolutionary games in interdependent networks[R/OL]. [2015??12??26]. http: ∥www??nature??com/articles/srep04436?message ??global=remove&WT??ec_id=SREP??639??20140325.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133