|
- 2016
工业汽轮机补汽结构对压力损失的影响及优化
|
Abstract:
为改进工业汽轮机补汽结构的性能,应用ANSYS??CFX软件、以SST??RM湍流模型对流体混合产生的总压损失进行了详细研究,分析了结构参数对总压损失的影响,得出在不同流量比下,支流以60°夹角进入主流,或者过渡段为圆角时,T型通道具有较低的总压损失。在此基础上,优化设计了一种截面为椭圆形且沿周向截面面积渐缩的补汽结构,优化后的补汽结构能够有效控制补汽沿周向的密流分布及混合蒸汽的流动方向,由此提高了整机性能。研究结果表明:补汽流动方向与主流方向的夹角对流场有较大影响,优化结构的总压损失系数在各工况下至少降低30%;截面形状与截面面积变化对补汽的周向扩散有较大影响,截面为椭圆形且截面面积沿周向渐缩时补汽结构能够提高密流周向分布的均匀度;采用混合总压损失系数和标准偏差能够有效评估补汽性能。
To improve performance of steam admission geometry in industrial steam turbine, the total pressure loss of the mixing flow are investigated with ANSYS??CFX and the effects of admission geometry parameters on the total pressure loss are evaluated by SST??RM. For a T typed passage, as the branch flow jets into the main stream at angle of 60° or the connecting part is set as rounded corner, the total pressure loss gets lower at different flow rate. Analyzing the total pressure loss coefficient of the T typed passage in the flow field, a new admission with elliptical and gradually converging sections along the circumferential direction is designed, and the optimized structure can effectively control the admission mass flow distribution and the flow direction, which makes the admission density flow more uniform along the circumferential direction to improve the performance of the whole steam turbine. Under the same condition, when the angle between the admission steam flow and main flow is taken as about 60°, the total pressure loss can be reduced by more than 30% compared with the case of 90°. The admission structure with elliptical cross section is beneficial to improve the uniformity of density flow distribution along the circumferential direction. The mixing total pressure coefficient and the standard deviation are suggested to effectively evaluate the admission performance
[1] | WNG Jiaquan, SUN Zhixin, GAO Lin, et al. Steam parameter optimization of a sintering waste heat recovery dual pressure system [J]. Journal of Engineering for Thermal Energy and Power, 2013, 28(6): 580??584. |
[2] | ZHAO Qinxin, WANG Yufeng, WANG Xuebin, et al. Technical advances and status of China’s waste heat utilization [J]. Industrial Boils, 2009, 24(5): 8??15. |
[3] | [6]ENGELMANN D, SCHRAMM A, POLKLAS T, et al. Losses of steam admission in industrial steam turbines depending on geometrical parameters, GT2014??25172 [R]. New York, USA: ASME, 2014. |
[4] | [7]ENGELMANN D, KALKKUHL T J, POLKLAS T, et al. Influence of shroud cavity jet and steam admission through a circumferential slot on the flow field in a steam turbine, GT2012??68465 [R]. New York, USA: ASME, 2012. |
[5] | [8]王世柱, 李志刚, 李军, 等. 补汽对透平级气动性能和静叶汽封转子动力特性影响的数值模拟 [J]. 西安交通大学学报, 2015, 49(5): 56??61. |
[6] | WANG Shizhu, LI Zhigang, LI Jun, et al. Numerical investigations for effect of supplementary steam on aerodynamic performance of turbine stage and rotordynamics of stator seal [J]. Journal of Xi’an Jiaotong University, 2015, 49(5): 56??61. |
[7] | [9]NEKRASOV A. Partial arc steam admission optimization in order to reduce vibration of steam turbine with tilting??pad journal bearings, GT2013??94429 [R]. New York, USA: ASME, 2013. |
[8] | [10]BEER W, HIRSCH P. Influence of partial admission on the downstream stages of a reaction turbine: an analytical approach verified by measurements, GT2013??94661 [R]. New York, USA: ASME, 2013. |
[9] | [11]CHALLAND S, DIRSCHAUER E, LLIEVSKI M, et al. A new partial admission method for turbocharger turbine control at off??design, GT2013??95441 [R]. New York, USA: ASME, 2013. |
[10] | [12]NI R H, HUMBER W, NI M, et al. Performance estimation of a turbine under partial??admission and flow pulsation conditions at inlet, GT2013??94811 [R]. New York, USA: ASME, 2013. |
[11] | [18]LI Wei, QIAO Weiyang, XU Kaifu, et al. Numerical simulation of active control on tip leakage flow in axial turbine [J]. Chinese Journal of Aeronautics, 2009, 22(2): 129??137. |
[12] | LI Ping, ZHANG Di, HE Lin, et al. Study on three dimensional flow of last stage with lashing wire and tip clearance in steam turbine [J]. Proceedings of the CSEE, 2011, 31(8): 80??86. |
[13] | LI Gang, XU Jianqun, CAO Zuqing, et al. Research on calculation of N2 leakage and intermediate pressure turbine efficiency [J]. Proceedings of the CSEE, 2010, 30(26): 23??28. |
[14] | [21]冯娇龙, 弓学敏, 张振超, 等. 闪蒸补汽式余热发电机组的参数优化 [J]. 节能技术, 2013, 31(178): 159??163. |
[15] | FENG Jiaolong, GONG Xuemin, ZHANG Zhenchao, et al. Parameter optimization of waste heat generating unit with flash evaporator [J]. Energy Conservation Technology, 2013, 31(178): 159??163. |
[16] | [23]IDELCHIK I E. Handbook of hydraulic resistance [M]. 2nd ed. Carlsbad, CA, USA: Hemisphere Publishing, 1986: 333??388. |
[17] | [1]王家全, 孙志新, 高林, 等. 烧结余热回收双压系统蒸汽参数优化 [J]. 热能动力工程, 2013, 28(6): 580??584. |
[18] | [2]赵钦新, 王宇峰, 王学斌, 等. 我国余热利用现状与技术进展 [J]. 工业锅炉, 2009, 24(5): 8??15. |
[19] | [13]ZARYANKIN A E, ZROICHIKOV N A, ARIANOV S V, et al. Reduction of non??uniformity of flow parameters at an nozzle row of the first uncontrolled stage of a steam turbine with partial steam admission [J]. Thermal Engineering, 2006, 53(11): 862??867. |
[20] | [16]陈党慧, 徐鸿, 杨昆. 蒸汽轮机抽汽口流场的数值模拟 [J]. 热能动力工程, 2005, 20(1): 10??13. |
[21] | [17]贾惟, 刘火星. 高负荷涡轮叶冠泄漏损失来源分析 [J]. 推进技术, 2014, 35(1): 33??42. |
[22] | [22]MILLER D S. Internal flow systems [M]. 2nd ed. London, UK: British Hydromechanics Research Association, 1990: 87??92. |
[23] | [3]刘强, 段远源. 背压式汽轮机组与有机朗肯循环耦合的热电联产系统 [J]. 中国电机工程学报, 2013, 33(23): 29??36. |
[24] | LIU Qiang, DUAN Yuanyuan. Cogeneration system comprising back??pressure steam turbine generating unit coupled with organic Rankine cycle [J]. Proceedings of the CSEE, 2013, 33(23): 29??36. |
[25] | [4]尹刚, 吴方松, 张立志. 低温余热发电技术的特点和发展趋势探讨 [J]. 东方电气评论, 2011, 25(1): 1??6. |
[26] | YIN Gang, WU Fangsong, ZHANG Lizhi. Discussion on trends of development and technical characteristics of low temperature waste??heat electric power generation [J]. Dongfang Electric Review, 2011, 25(1): 1??6. |
[27] | [5]朱宝田. 透平技术与我国电力的可持续发展 [J]. 上海汽轮机, 2002, 31(4): 14??20. |
[28] | [14]TAKADA S, SASAO Y, YAMAMOTO S, et al. Study on flange geometry of steam turbine partial admission stage using unsteady flow analysis [J]. Transactions of the Japan Society of Mechanical Engineers: B, 2012, 78(788): 753??761. |
[29] | [15]SCHRAMM A, MULLER T, POLKLAS T, et al. Improvement of flow conditions for the stages subsequent to extraction modules in industrial steam turbine, GT2014??25390 [R]. New York, USA: ASME, 2014. |
[30] | CHEN Danghui, XU Hong, YANG Kun. Numerical simulation of the flow field at the steam extraction opening of a steam turbine [J]. Journal of Engineering for Thermal Energy and Power, 2005, 20(1): 10??13. |
[31] | JIA Wei, LIU Huoxing. Loss sources analysis of shroud leakage flow in highly??loaded turbine [J]. Journal of Propulsion Technology, 2014, 35(1): 33??42. |
[32] | [19]李平, 张荻, 何林, 等. 具有阻尼拉金和叶顶间隙的汽轮机末级复杂三维流动特性 [J]. 中国电机工程学报, 2011, 31(8): 80??86. |
[33] | [20]李刚, 胥建群, 曹祖庆, 等. 中间分隔轴封漏汽及中压缸效率计算方法 [J]. 中国电机工程学报, 2010, 30(26): 23??28. |
[34] | ZHU Baotian. The turbine technologies for sustainable development of electric power in China [J]. Shanghai Turbine, 2002, 31(4): 14??20. |