全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

大量不凝性气体存在时不同润湿性 传热管冷凝传热特性实验研究
Condensation Heat Transfer Performance of Heat Transfer Tubes with Different Wettabilities in Presence of a Large Amount of Noncondensable Gas

DOI: 10.7652/xjtuxb201507006

Keywords: 翅片管,冷凝传热,超疏水,不凝性气体
finned tube
,condensation heat transfer,superhydrophobic,noncondensable gas

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了提高大量不凝性气体存在时水蒸气的冷凝传热性能,实现对电力、化工、制冷等工业领域中余热的高效回收利用,基于水平管外冷凝传热实验系统,实验研究了氮气?菜?蒸气混合气体在不同润湿性光滑管和翅片管表面的润湿特性和冷凝传热特性。通过化学刻蚀与自组装方法对紫铜光滑管与翅片管表面进行疏水与超疏水改性处理,并且根据仿生原理,制备了亲水+疏水组合翅片管表面与亲水+超疏水组合翅片管表面。研究发现,当大量不凝性气体存在时,亲水+超疏水组合翅片管的冷凝传热特性最优,水蒸气体积分数对不同润湿性传热管的冷凝传热特性影响显著,并且随着水蒸气体积分数增大,超疏水翅片管和亲水+超疏水组合翅片表面的冷凝形式由珠状冷凝逐渐向膜状冷凝过渡。
To improve the condensation heat transfer performance of water vapor in the presence of a large amount of noncondensable gas and realize the high??efficiency recovery of industrial residual heat in electricity, chemical engineering, refrigeration and other fields, the outside condensation heat transfer performances of horizontal plain and finned tubes with different surface wettabilities were experimentally studied. The self??assembled monolayer coatings of n??octadecyl mercaptan using oxidation and etching treatments were employed to create the hydrophobic or superhydrophobic surfaces with nanostructures. The hydrophilic??hydrophobic and hydrophilic??superhydrophobic hybrid surfaces based on finned tubes were prepared. The experimental results showed that the hydrophilic??superhydrophobic hybrid finned tube achieved the highest condensation heat transfer performance in the presence of a large amount of noncondensable gases. The volume fraction of water vapor in the nitrogen??vapor mixture has important influence on the heat transfer characteristics. And as the vapor volume fraction increased, the dropwise condensation was transformed gradually to the film condensation on both superhydrophobic and hydrophilic??superhydrophobic hybrid finned tubes

References

[1]  [9]MILJKOVIC N, ENRIGHT R, WANG E N. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces [J]. Acs Nano, 2012, 6(2): 1776??1785.
[2]  [17]NUSSELT W. Die oberflachencondensation des wasserdampfes [J]. Zetrschr Ver Deutch Ing, 1916, 60: 541??546.
[3]  [2]NAMASIVAYAM S, BRIGGS A. Effect of vapour velocity on condensation of atmospheric pressure steam on integral??fin tubes [J]. Applied Thermal Engineering, 2004, 24(8/9): 1353??1364.
[4]  [4]VEMURI S, KIM K J, WOOD B D, et al. Long term testing for dropwise condensation using self??assembled monolayer coatings of n??octadecyl mercaptan [J]. Applied Thermal Engineering, 2006, 26(4): 421??429.
[5]  [5]宋永吉, 任晓光, 任绍梅, 等. 水蒸气在超疏水表面上的冷凝传热 [J]. 工程热物理学报, 2007, 28(1): 95??97.
[6]  SONG Yongji, REN Xiaoguang, REN Shaomei, et al. Condensation heat transfer of steam on super??hydrophobic surfaces [J]. Journal of Engineering Thermophysics, 2007, 28(1): 95??97.
[7]  [6]王四芳, 兰忠, 王爱丽, 等. 超疏水表面蒸汽及含不凝气蒸汽滴状冷凝传热实验分析 [J]. 化工学报, 2010, 61(3): 607??611.
[8]  WANG Sifang, LAN Zhong, WANG Aili, et al. Dropwise condensation of steam and steam??air mixture on super??hydrophobic surfaces [J]. CIESC Journal, 2010, 61(3): 607??611.
[9]  [7]LAN Z, MA X H, WANG S F, et al. Effects of surface free energy and nanostructures on dropwise condensation [J]. Chemical Engineering Journal, 2010, 156(3): 546??552.
[10]  [8]MA X H, WANG S F, LAN Z, et al. Wetting mode evolution of steam dropwise condensation on superhydrophobic surface in the presence of noncondensable gas [J]. ASME Journal of Heat Transfer, 2012, 134(2): 021501.
[11]  [10]MILJKOVIC N, ENRIGHT R, NAM Y, et al. Jumping??droplet??enhanced condensation on scalable superhydrophobic nanostructured surfaces [J]. Nano Letters, 2012, 13(1): 179??187.
[12]  [11]XIAO R, MILJKOVIC N, ENRIGHT R, et al. Immersion condensation on oil??infused heterogeneous surfaces for enhanced heat transfer [J]. Scientific Reports, 2013, 3: 1??6.
[13]  [12]KRISHNASWAMY S, WANG H S, ROSE J W. Condensation from gas??vapour mixtures in small non??circular tubes [J]. International Journal of Heat and Mass Transfer, 2006, 49(9): 1731??1737.
[14]  [13]GNIELINSKI V. New equations for heat and mass??transfer in turbulent pipe and channel flow [J]. International Chemical Engineering, 1976, 16(2): 359??368.
[15]  [14]BEVINGTON P R, ROBINSON D K. Data reduction and error analysis for the physical sciences [M]. New York, USA: McGraw??Hill, 1969.
[16]  [15]QIAN B T, SHEN Z Q. Super??hydrophobic CuO nanoflowers by controlled surface oxidation on copper [J]. Journal of Inorganic Materials, 2006, 21(3): 747??752.
[17]  [1]KUMAR R, VARMA H K, MOHANTY B, et al. Prediction of heat transfer coefficient during condensation of water and R??134a on single horizontal integral??fin tube [J]. International Journal of Refrigeration, 2002, 25(1): 111??12.
[18]  [3]VEMURI S, KIM K J. An experimental and theoretical study on the concept of dropwise condensation [J]. International Journal of Heat and Mass Transfer, 2006, 49(3/4): 649??657.
[19]  [16]PARKER A R, LAWRENCE C R. Water capture by a desert beetle [J]. Nature, 2001, 414(6859): 33??34.
[20]  [18]HU H W, TANG G H. Theoretical investigation of stable dropwise condensation heat transfer on a horizontal tube [J]. Applied Thermal Engineering, 2014, 62(2): 671??679.
[21]  [19]CASSIE A B D, BAXTER S. Wettability of porous surfaces [J]. Transactions of the Faraday Society, 1944, 40: 546??551.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133