全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

气体稀薄效应对微机电系统(MEMS)气体轴承-转子系统不平衡响应的影响
Influence of Gas Rarefaction Effect on Unbalance Response of Micro??Electro??Mechanical (MEMS) Gas Bearing??Rotor System

DOI: 10.7652/xjtuxb201507022

Keywords: 微机电系统,气体轴承-转子系统,不平衡响应,稀薄效应,双向隐式差分算法
micro??electro??mechanical system (MEMS)
,gas bearing??rotor system,unbalance response,rarefaction effect,alternating??direction implicit difference method

Full-Text   Cite this paper   Add to My Lib

Abstract:

为研究气体稀薄效应对微机电系统(MEMS)气体轴承?沧?子系统不平衡响应的影响,给出了MEMS气体轴承-转子系统运动方程和MEMS气体轴承的雷诺方程;利用双向隐式差分算法,给出了修正雷诺方程的详细数值求解过程;将转子运动方程与雷诺方程相结合,采用4阶龙格?部馑?方法计算分析了气体稀薄效应对气体轴承-转子系统不平衡响应的影响。研究结果显示,考虑气体稀薄效应后,当质量偏心距较大时,MEMS气体轴承?沧?子系统的失稳轴颈转速较大,表明合适的偏心质量有助于改善系统的稳定性;在相同的质量偏心距下,考虑气体稀薄效应时气体轴承-转子系统在较低轴颈转速处出现峰值,表明此时不平衡偏心质量对气体轴承?沧?子系统运动的影响增大。
To investigate the influence of gas rarefaction effect on the unbalance response of micro??electro??mechanical system (MEMS) gas bearing??rotor system, the motion equation of the MEMS bearing??rotor system and the Reynolds equation of MEMS gas bearing are presented, and the process of solving the modified Reynolds equation using the alternating??direction implicit difference method is given. The motion equation of the rotor and the modified Reynolds equation are combined, and the influence of gas rarefaction effect on the unbalance response of MEMS gas bearing??rotor system is analyzed using the 4th??order Rounge??Kutta method. The study shows that the stability speed of the journal of MEMS rotor system is higher with larger mass eccentricity when the gas rarefaction effect is considered, therefore, a proper eccentric mass of the rotor could improve the stability of MEMS gas bearing??rotor system. With the same eccentric mass, the peak value of unbalance response of MEMS gas bearing??rotor system emerged at the lower rotational speed, which shows that the unbalanced eccentric mass would have much influence on the motion of MEMS rotor system when the gas rarefaction effect is taken into account

References

[1]  [1]EPSTEIN A H. Millimeter??scale, micro??electro??mechanical systems gas turbine engines [J]. ASME Journal of Engineering for Gas Turbines and Power, 2004, 126: 205??226.
[2]  [4]PIEKOS E S. Numerical simulation of gas??lubricated journal bearings for microfabricated machines [D]. Cambridge, USA: Massachusetts Institute of Technology, 2000.
[3]  [8]ZHANG Wenming, ZHOU Jianbin, MENG Guang. Performance and stability analysis of gas??lubricated journal bearings in MEMS [J]. Tribology International, 2011, 44: 887??897.
[4]  LIU Ren, WANG Xiaoli. Numerical predication of the performance of micro gas lubricated spiral groove thrust bearing [J]. Journal of Mechanical Engineering, 2010, 46(21): 113??117.
[5]  [14]ZHANG Haijun, ZHU Changsheng, TANG Ming. The effects of rarefaction on the characteristics of micro gas journal bearings [J]. Journal of Zhejiang University: Science, 2010, 10(5): 43??49.
[6]  [15]谢友柏, 汤玉娣. 具有非线性油膜力的滑动轴承?沧?子系统振动特性的研究 [J]. 西安交通大学学报, 1987, 21(6): 93??104.
[7]  XIE Youbai, TANG Yudi. Influence of non??linearity of hydrodynamic oil film forces on vibration characteristics of a journal bearing??rotor system [J]. Journal of Xi’an Jiaotong University, 1987, 21(6): 93??104.
[8]  [16]袁小阳, 朱均. 不平衡转子?不?动轴承系统稳定性的非线性研究 [J]. 振动与冲击, 1996, 15(1): 71??76.
[9]  YUAN Xiaoyang, ZHU Jun. Study on the non??linear stability of unbalanced rotor bearing systems [J]. Journal of Vibration and Shock, 1996, 15(1): 71??76.
[10]  [2]孟光, 张文明. 微机电系统动力学 [M]. 北京: 科学出版社, 2008: 1??6.
[11]  [3]ORR D J. Macroscale investigation of high speed gas bearing for MEMS devices [D]. Cambridge, USA: Massachusetts Institute of Technology, 2000.
[12]  [6]LIU L X. Theory for hydrostatic gas journal bearings for micro??electro??mechanical systems [D]. Cambridge, USA: Massachusetts Institute of Technology, 2005.
[13]  [13]张海军, 祝长生, 杨琴. 基于稀薄效应的微气体径向轴承稳态性能 [J]. 力学学报, 2009, 41(6): 941??946.
[14]  ZHANG Haijun, ZHU Changsheng, YANG Qin. Steady characteristics of micro gas journal bearings based on rarefaction effect [J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(6): 941??946.
[15]  WANG Xingbo, ZHONG Zhihua. Generalized Thomas algorithm for solving cyclic tridiagonal equations [J]. Chinese Journal of Computational Mechanics, 2004, 21(1): 73??76.
[16]  [5]TEO C J. MEMS turbomachinery rotor??dynamics: modeling, design and testing [D]. Cambridge, USA: Massachusetts Institute of Technology, 2006.
[17]  [7]LEE Y, KWAK H, KIM C, et al. Numerical prediction of slip flow effect on gas??lubricated journal bearings for MEMS/MST??based micro??rotating machinery [J]. Tribology International, 2005, 38: 89??96.
[18]  [9]黄海, 孟光, 赵三星. 二阶滑移边界对微型气浮轴承稳态性能的影响 [J]. 力学学报, 2006, 38(5): 668??673.
[19]  HUANG Hai, MENG Guang, ZHAO Sanxing. The effects of second??order slip??flow on the steady performance of micro gas bearing [J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(5): 668??673.
[20]  [10]ZHANG Xiaoqing, WANG Xiaoli, LIU Ren, et al. Influence of temperature on nonlinear dynamic characteristics of spiral??grooved gas??lubricated thrust bearing??rotor systems for microengine [J]. Tribology International, 2013, 61: 138??143.
[21]  [11]ZHANG Xiaoqing, WANG Xiaoli, ZHANG Yuyan. Non??linear dynamic analysis of the ultra??short micro gas journal bearing??rotor systems considering viscous friction effects [J]. Nonlinear Dynamics, 2013, 73: 751??765.
[22]  [12]刘韧, 王晓力. 微气体螺旋槽推力轴承润滑数值模拟 [J]. 机械工程学报, 2010, 46(21): 113??117.
[23]  [17]MENG Guang, ZHANG Wenming, HUANG Hai, et al. Micro??rotor dynamics for micro??electro??mechanical systems (MEMS) [J]. Chaos, Solitons and Fractals, 2009, 40: 538??562.
[24]  [18]BURGDORFER A. The influence of the molecular mean free path on the performance of hydrodynamic gas lubricated bearings [J]. Journal of Basic Engineering, 1959, 81(1): 94??100.
[25]  [19]WU L, BOGY D B. New first and second order slip models for the compressible Reynolds equations [J]. ASME Journal of Tribology, 2003, 125(3): 558??561.
[26]  [20]王兴波, 钟志华. 求解周期性三对角方程组的广义Thomas 算法 [J]. 计算力学学报, 2004, 21(1): 73??76.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133