全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

气凝胶及其纤维复合材料等效导热系数预测
Prediction of the Effective Thermal Conductivity of Aerogel and Its Fiber??Loaded Composites

DOI: 10.7652/xjtuxb201507005

Keywords: 气凝胶,数值重构,等效导热系数,格子Boltzmann方法
aerogel
,numerical reconstruction,effective thermal conductivity,lattice Boltzmann method

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究气凝胶及其纤维复合材料的隔热性能,分别数值重构了几种气凝胶及其纤维复合材料的微细观随机结构,采用格子Boltzmann方法数值求解了它们的等效导热系数,同时用基于瞬态平面热源法的Hot Disk热常数分析仪测量了它们在复杂环境下的等效导热系数。研究表明:骨架连续的开孔型微观结构比骨架不连续的颗粒型微观结构更符合气凝胶的实际结构,开孔型结构等效导热系数的数值预测值与实验值的偏差大部分在±10%内;气凝胶的密度值会影响它的隔热性能,且存在着最佳的密度使得气凝胶的等效导热系数最低;纤维复合气凝胶的等效导热系数随着纤维体积分数的增加而增加;纤维在垂直于热流方向的水平面内随机排布时对气凝胶的隔热性能影响最小。
Different random microstructures of aerogels and their fiber??loaded composites were numerically reconstructed to investigate their insulation performances. The lattice Boltzmann method was adopted to calculate their effective thermal conductivities. Some experimental measurements based on the hot disk method were conducted to determine the effective thermal conductivities of the aerogels at different pressures. The results show that: the open??cell microstructure with continuous skeleton is more suitable for the real structure of the aerogel than the granular microstructure with discontinuous skeleton; the predictions of the effective thermal conductivities based on the open??cell structure agree well with the experimental data, and the deviations are within ±10%; the density of aerogels affects their effective thermal conductivities, and there exists an optimal density value to minimize the effective thermal conductivity of a aerogel; the effective thermal conductivities of the aerogel composites increase with the fiber doping concentration; the increment of the effective thermal conductivity of the fiber??load aerogel is the lowest when the fibers are laid in the plane vertical to heat flux

References

[1]  [10]WANG M, PAN N. Modeling and prediction of the effective thermal conductivity of random open??cell porous foams [J]. International Journal of Heat and Mass Transfer, 2008, 51(5/6): 1325??1331.
[2]  [11]WANG M, KANG Q, PAN N. Thermal conductivity enhancement of carbon fiber composites [J]. Applied Thermal Engineering, 2009, 29(2/3): 418??421.
[3]  [12]XUAN Y M, ZHAO K, LI Q. Investigation on mass diffusion process in porous media based on Lattice Boltzmann method [J]. Heat and Mass Transfer, 2010, 46(10): 1039??1051.
[4]  [13]HE Y L, WANG Y, LI Q. Lattice Boltzmann method: theory and applications [M]. Beijing, China: Science Press, 2009.
[5]  [3]XIE T, HE Y L, HU Z J. Theoretical study on thermal conductivities of silica aerogel composite insulating material [J]. International Journal of Heat and Mass Transfer, 2013, 58(1/2): 540??552.
[6]  [9]WANG M, WANG J, PAN N, et al. Mesoscopic predictions of the effective thermal conductivity for microscale random porous media [J]. Physical Review: E, 2007, 75(3): 036702.
[7]  [14]MOHAMOD A A. Lattice Boltzmann method [M]. New York, USA: Springer, 2011.
[8]  [15]ZENG S Q, HUNT A, GREIF R. Mean free path and apparent thermal conductivity of a gas in a porous medium [J]. Journal of Heat Transfer, 1995, 117(3): 758??761.
[9]  [16]WANG M R, WANG X, WANG J, et al. Grain size effects on effective thermal conductivity of porous materials with internal thermal contact resistance [J]. Journal of Porous Media, 2013, 16(11): 1043??1048.
[10]  [17]方文振, 张虎, 屈肖迪, 等. 遮光剂对气凝胶复合材料隔热性能的影响 [J]. 化工学报, 2014, 65(S1): 168??174.
[11]  FANG Wenzhen, ZHANG Hu, QU Xiaodi, et al. Influence of opacifiers on thermal insulation properties of composite aerogels [J]. CIESC Journal, 2014, 65(S1): 168??174.
[12]  [2]ZENG S Q, HUNT A, GREIF R. Geometric structure and thermal conductivity of porous medium silica aerogel [J]. Journal of Heat Transfer, 1995, 117(4): 271??277.
[13]  [4]WEI G S, LIU Y, ZHANG X, et al. Thermal conductivities study on silica aerogel and its composite insulation materials [J]. International Journal of Heat and Mass Transfer, 2011, 54(11/12): 2355??2366.
[14]  [5]DAN D, ZHANG H, TAO W Q. Effective structure of aerogels and decomposed contributions of its thermal conductivity [J]. Applied Thermal Engineering, 2014, 72(1): 2??9.
[15]  [1]H?aSING N, SCHUBERT U. Aerogels??airy materials: chemistry, structure, and properties [J]. Angewandte Chemie: International Edition, 1998, 37(12): 22??45.
[16]  [6]LU G, WANG X D, DUAN Y Y, et al. Effects of non??ideal structures and high temperatures on the insulation properties of aerogel??based composite materials [J]. Journal of Non??Crystalline Solids, 2011, 357(22/23): 3822??3829. [7]ZHAO J J, DUAN Y Y, WANG X D, et al. Radi??ative properties and heat transfer characteristics of fiber??loaded silica aerogel composites for thermal insulation [J]. International Journal of Heat and Mass Transfer, 2012, 55(19/20): 5196??5204.
[17]  [8]International Organization for Standardization. ISO 22007??2: 2008(E)Plastics: determination of thermal conductivity and thermal diffusivityPart 2Transient plane heat source method [S/OL]. [2014??12??10]. http: ∥www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=40683.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133