全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

基于边缘保持滤波的单幅图像快速去雾
A Fast Haze Removing Algorithm of Single Image Using Edge Preserving Filtering

DOI: 10.7652/xjtuxb201503022

Keywords: 去雾算法,暗通道先验,边缘保持滤波
haze removal algorithm
,dark channel prior,edge preserving filter

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了解决基于暗通道先验的图像去雾算法运行效率低下的问题以及天空等明亮灰白区域去雾后的色彩失真问题,提出一种基于边缘保持滤波的单幅图像快速去雾算法。首先根据暗通道先验规律,得到粗略的透射率图和大气光估计值;然后用边缘保持滤波算法对粗略透射率滤波得到细节平滑、轮廓清晰的精细透射率图;再用阈值法对灰白明亮区域的透射率修正,之后用边缘保持滤波算法对修正后的透射率进行平滑,得到最终的透射率图。根据估计的大气光和透射率,利用大气散射模型即可恢复出无雾图像。经测试,该算法不仅具有很高的运行效率,而且对各种类型的薄雾图像都有较好的去雾效果。客观评测也表明,该算法在对比度增强程度、色调还原程度、结构信息复原程度方面的综合指标都优于其他算法。另外,所提算法还能够实现图像处理器(GPU)像素级的并行运算,对于分辨率为1 280像素×1 024像素的彩色图像,用型号为NVIDIA GeForce 9 800 GT的GPU处理,速度可达10帧/s。
A fast haze removing algorithm of single image is proposed to solve the problem that the image dehazing algorithm using dark channel prior is of low efficiency and the color distortion of the bright grey area happens after dehazing. The algorithm is based on the edge preserving filtering, and first gives rough estimations of the transmittance and the atmospheric light using dark channel prior. Then, these rough transmittances are optimized through using the edge preserving filtering algorithm to get refined transmittances with smooth details and clear outlines. The bright and grey areas in the refined transmittances are corrected using a threshold, and the final transmittance image is generated by using the edge preserving filtering once more to smooth the corrected transmittances. Lastly, the atmospheric scattering model is used to recover the haze image from the estimated atmospheric light and the final transmittance image. Test results show that the proposed algorithm not only has the very high efficiency, but also has a preferable effect in dehazing all kinds of images with thin haze. It follows from the objective evaluation that the algorithm is superior to other existing algorithms in the aggregative indicators including contrast enhancement, color reduction and structural information recovery. Moreover, the proposed algorithm can be realized in pix??level parallel computation using GPU. When the NVIDIA GeForce 9 800 GT GPU is used, the processing speed reaches 10 frames per second for a range of 1 280*1 024 resolutions

References

[1]  [2]FATTAL R. Single image dehazing [J]. ACM Transactions on Graphics, 2008, 27(3): 72.
[2]  [3]HE K, SUN J, TANG X. Single image haze removal using dark channel prior [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341??2353.
[3]  [9]李权合, 查宇飞, 熊磊, 等. 雾霾退化图像场景再现新算法 [J]. 西安电子科技大学学报, 2013, 40(5): 99??106.
[4]  LI Quanhe, ZHA Yufei, XIONG Lei, et al. Novel method for haze degraded image scene rendition [J]. Journal of Xidian University, 2013, 40(5): 99??106.
[5]  [11]褚宏莉, 李元祥, 周则明, 等. 基于黑色通道的图像快速去雾优化算法 [J]. 电子学报, 2013, 41(4): 791??797.
[6]  [12]LEVIN A, LISCHINSKI D, WEISS Y. A closed??form solution to natural image matting [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(2): 228??242.
[7]  [4]ZHANG J, LI L, YANG G, et al. Local albedo??insensitive single image dehazing [J]. The Visual Computer, 2010, 26(6/7/8): 761??768.
[8]  WANG Sen, PAN Yuzhai, LIU Yi, et al. Image quality improvement of laser active imaging in fog [J]. Infrared and Laser Engineering, 2013, 42(9): 2392??2396.
[9]  [6]石文轩, 詹诗萦, 李婕. 一种边缘优化的暗通道去雾算法 [J]. 计算机应用研究, 2013, 30(12): 3854??3856.
[10]  SHI Wenxuan, ZHAN Shiying, LI Jie. Dark channel prior dehazing algorithm based on edge optimization [J]. Application Research of Computers, 2013, 30(12): 3854??3856.
[11]  [7]孙小明, 孙俊喜, 赵立荣, 等. 暗原色先验单幅图像去雾改进算法 [J]. 中国图象图形学报, 2014, 19(3): 381??385.
[12]  SUN Xiaoming, SUN Junxi, ZHAO Lirong, et al. Improved algorithm for single image haze removing using dark channel prior [J]. Journal of Image and Graphics, 2014, 19(3): 381??385.
[13]  [10]孙伟, 李大健, 刘宏娟, 等. 基于大气散射模型的单幅图像快速去雾 [J]. 光学精密工程, 2013, 21(4): 1040??1046.
[14]  SUN Wei, LI Dajian, LIU Hongjuan, et al. Fast single image fog removal based on atmospheric scattering model [J]. Optics and Precision Engineering, 2013, 21(4): 1040??1046.
[15]  CHU Hongli, LI Yuanxiang, ZHOU Zeming, et al. Optimized fast dehazing method based on dark channel prior [J]. Acta Electronica Sinica, 2013, 41(4): 791??797.
[16]  [1]TAN R T. Visibility in bad weather from a single image [C]∥IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2008: 1??8.
[17]  [5]王森, 潘玉寨, 刘一, 等. 提高雾天激光主动成像图像质量的研究 [J]. 红外与激光工程, 2013, 42(9): 2392??2396.
[18]  [8]ZHANG J, HU S. A GPU??accelerated real??time single image de??hazing method using pixel??level optimal de??hazing criterion [J]. Journal of Real??Time Image Processing, 2012: 1??12.
[19]  [13]HE K, SUN J, TANG X. Guided image filtering [M]. Berlin: Springer, 2010: 1??14.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133