|
- 2015
出水超空泡的形状与弗劳德数影响的实验研究
|
Abstract:
潜射导弹/射弹超空泡出水时超空泡与界面的作用机理目前还不完全清楚,而非定常流重力作用下的超空泡形状的描述也需要进一步探讨。为此,进行了水下高速射弹超空泡出水的实验研究,用高速摄影仪拍摄了航行体出水过程中空泡形状变化的图像,测量分析了各种不同头型航行体诱导的空泡尺寸、轮廓和生成溃灭形态的变化规律,并将研究结果与已有的理论公式和半经验公式进行了对比。研究表明,对所研究的工况,Savchenko半经验公式的适用范围可以扩展到空化数小于0??12;此外,实验测得的超空泡归一化长度亦高于考虑弗劳德数影响的Vasin的理论值,文中采用一系数对该公式进行了修正。实验研究还发现,航行体头型对超空泡的尺寸影响较大,超空泡与自由液面接触后,空泡直径有一定程度的增大。
The interreaction mechanism between the supercavitation and the free interface of the submarine??launched missiles or projectiles with supercavities has not been clearly understood. And the description about the supercavity shape in an unsteady flow with gravity also needs to be further investigated. An experimental study on underwater high??speed projectiles was carried out in a self??designed experimental facility. The water??exit process of projectiles and the shape change of supercavities were recorded by a high??speed camera. The size, contour, formation and collapse of the supercavities were measured and analyzed. The experiment data were compared with the theoretical formula and semi??empirical formula. The results show that under the studied conditions, the semi??empirical formula of Savchenko can be extended to the cavitation number less than 0??12. In addition, the experimental data are higher than the theoretical value given by Vasin considering the effect of gravity. A coefficient is added to modify the given formula. Furthermore, the experimental study shows that the shape of projectile head has great effect on the size of the formed supercavities. When the supercavities come into contact with the free surface, the supercavity diameter will be increased to a certain extent
[1] | JIANG Baihui, MA Chunxun, LIU Lehua. The technology and its application of supercavitation in foreign [J]. Winged Missiles Journal, 2008(5): 20??24. |
[2] | [10]PARISHEV E V. Pulsations of vertical cavities in ponderous fluid [J]. Uch Zap TsAGI, 1981, 12(3): 1??9. |
[3] | [11]VASIN A D. The principle of independence of the cavity sections expansion (Logvinovich’s principle) as the basis for investigation on cavitation flows [C]∥VKI Special Course on Supercavitating Flows. Brussels, Belgium: VKI, 2001: RTO??EN??010(8). |
[4] | [12]曹伟, 王聪, 魏英杰, 等. 自然超空泡形态特性的射弹实验研究 [J]. 工程力学, 2006, 23(12): 175??187. |
[5] | [14]张学伟, 张亮, 于开平, 等. 自然超空泡形态稳定性的数值仿真 [J]. 弹道学报, 2009, 21(2): 103??106. |
[6] | ZHANG Xuewei, ZHANG Liang, YU Kaiping, et al. Numerical simulation of shape stability of natural supercavitation [J]. Journal of Ballistics, 2009, 21(2): 103??106. |
[7] | [8]LOGVINOVICH G V. 自由边界流动的水动力学 [M]. 施红辉, 译. 上海: 上海交通大学出版社, 2012: 97??122. |
[8] | CAO Wei, WANG Cong, WEI Yingjie, et al. High??speed projectile experimental investigations on the characteristics of natural supercavitation [J]. Engineering Mechanics, 2006, 23(12): 175??187. |
[9] | [17]胡俊辉. 水下垂直发射的航行体在出水过程中超空泡的形成、溃灭及其与自由面相互作用的水动力学机理研究 [D]. 杭州: 浙江理工大学, 2014. |
[10] | YUAN Xulong, ZHANG Yuwen, LIU Lehua. On methods of cavity profile measurement and analysis [J]. Journal of Experimental Mechanics, 2006, 21(2): 215??219. |
[11] | [2]姚奕, 聂永芳, 冯林平. 潜射导弹运载器水下发射关键技术研究 [J]. 飞航导弹, 2010(2): 56??60. |
[12] | YAO Yi, NIE Yongfang, FENG Linping. The key technology research of submarine missile carrier launching underwater [J]. Winged Missiles Journal, 2010(2): 56??60. |
[13] | [3]WAUGH J G, STUBSTAD G W. Water??exit behavior of missiles: part 1Preliminary studies, AD273717 [R]. China Lake, California, USA: Underwater Ordnance Department, 1961. |
[14] | [4]XING??KAEDING Y, JENSEN G, PERIC M. Numerical simulation of water??entry and water??exit of a horizontal circular cylinder [C]∥Proceedings of the 6th International Conference on Hydrodynamics. Beijing, China: The Chinese Society of Theoretical and Applied Mechanics, 2004: 663??669. |
[15] | [5]鲁传敬, 李杰. 水下航行体出水空泡溃灭过程及其特性研究 [C]∥第十一届全国水动力学学术会议暨第二十四届全国水动力学研讨会并周培源教授诞辰110周年纪念大会文集. 无锡: 海洋出版社, 2012: 54??67. |
[16] | [6]王一伟, 黄晨光, 杜特专, 等. 航行体垂直出水载荷与空泡溃灭机理分析 [J]. 力学学报, 2012, 44(1): 39??48. |
[17] | WANG Yiwei, HUANG Chenguang, DU Tezhuan, et al. Mechanism analysis about cavitation collapse load of underwater vehicles in a vertical launching process [J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1): 39??48. |
[18] | [7]REICHARDT H. The laws of cavitation bubbles at axially symmetrical bodies in a flow, No. 766 [R]. Spring Quarry, Great Britain: Ministry of Aircraft Production, 1946: 322??326. |
[19] | [9]SAVCHENKO Y N. Experimental investigation of supercavitating motion of bodies [C]∥VKI Special Course on Supercavitating Flows. Brussels, Belgium: VKI, 2001: EN??010??04. |
[20] | [15]刘海?F, 张宇文, 弋辉. 空泡形态的公式计算与CFD仿真 [J]. 指挥控制与仿真, 2011, 33(6): 116??118. |
[21] | [16]施红辉, 胡俊辉, 周浩磊. 完全超空泡出水的实验研究及理论分析 [J]. 空气动力学学报, 2014, 32(4): 544??550. |
[22] | SHI Honghui, HU Junhui, ZHOU Haolei. Experimental study and theoretical analysis of water exit of a supercavity [J]. Acta Aerodynamica Sinica, 2014, 32(4): 544??550. |
[23] | [1]姜百汇, 马春勋, 刘乐华. 国外超空泡技术及其应用 [J]. 飞航导弹, 2008(5): 20??24. |
[24] | [13]周素云, 施红辉, 胡青青, 等. 水平超空泡发生装置的研制及相关实验研究 [J]. 浙江理工大学学报, 2013, 30(2): 218??223. |
[25] | ZHOU Suyun, SHI Honghui, HU Qingqing, et al. Development of horizontal supercavity generating facility and relevant experimental study [J]. Journal of Zhejiang Sci??Tech University, 2013, 30(2): 218??223. |
[26] | LIU Haimin, ZHANG Yuwen, YI Hui. Cavity form formula computation and CFD simulation [J]. Command Control & Simulation, 2011, 33(6): 116??118. |
[27] | [18]袁绪龙, 张宇文, 刘乐华. 空泡外形测量与分析方法研究 [J]. 实验力学, 2006, 21(2): 215??219. |