|
- 2016
大型高速低温风洞冷量回收的方法研究
|
Abstract:
为提高低温风洞排气冷量的综合利用和节能减排,实现大型低温风洞科学建设,分析了目前大型低温设备冷量回收利用的现状和方法;针对低温风洞高雷诺数试验运行中排气系统的工作流程和特点,对大型高速低温风洞排气冷量进行了初步计算,结合当前低温工质气化冷量回收技术方案的流程分析和国内外低温系统冷量回收利用的技术特点,对低温风洞液氮喷雾制冷后冷量回收与高效利用的方法和可行性进行了初步研究。综合考虑技术难度和投资经济性,提出了通过蓄冷设备、空分装置、固态氮制取进行冷量回收的3种主要技术途径。分析结果表明:采用蓄冷设备需要周边用冷设备支持,回收效率低;利用空分装置无需额外投资,经济性较好;固态氮制取回收效率高,硬件投资大,经济性较差。通过合理调整风洞试验流程,选取合适的技术方案,可以实现大型低温风洞的冷量回收。
To promote the usage of potential cold energy from exhaust system of cryogenic wind tunnel, realize scientific construction and energy saving, the status and methods of cold energy recycle are discussed. The operating processes and features of exhaust system in high Reynolds number testing are introduced and the cold energy from cryogenic wind tunnel exhaust system is calculated preliminarily. Based on the process analysis of oversea cold energy recycle schemes from cryogenic fluids gasification and the technical features of domestic cold energy recycle schemes, the recovery and efficient utilization of cold energy from liquid nitrogen spray cooling in cryogenic wind tunnel are studied. Considering the technology feasibility and economical efficiency, three expected cryogenic energy recycle schemes are provided, including a storage of the exhaust energy for civil air??conditioning, re??liquefying the gaseous nitrogen through an air separation process and using solid nitrogen as the cooling source. The advantages and disadvantages of the above??mentioned three approaches are analyzed. The first scheme has a low recycling rate because of the necessary additional cold??consuming equipment; the second scheme has an acceptable recycling rate and a good economical efficiency without additional investment; the third scheme has a good recycling rate but the further higher investment. Thus an appropriate recycle scheme and a reasonable wind tunnel testing process are important for cryogenic wind tunnel exhaust energy recycling
[1] | [1]KILGORE R A. Evolution and development of cryogenic wind tunnels [C]∥ 43rd AIAA Aerospace Sciences Meeting and Exhibit. New York, USA: AIAA, 2005: 457. |
[2] | [2]GREEN J, QUEST J. A short history of the European transonic wind tunnel ETW [J]. Progress in Aerospace Sciences, 2011, 47(7): 319??368. |
[3] | [6]LIU Yanni, GUO Kaihua. A novel cryogenic power cycle for LNG cold energy recovery [J]. Energy, 2011, 36(5): 2828??2833. |
[4] | [7]陈利琼, 孙磊, 李卫杰, 等. 提高LNG接收站的冷量利用效率方法 [J]. 石油石化节能, 2013(11): 32??35. |
[5] | CHEN Liqiong, SUN Lei, LI Weijie, et al. Discussion on improving the cold energy utilization efficiency of LNG receiving station [J]. Energy Conservation in Petroleum & Petrochemical Industry, 2003(11): 32??35. |
[6] | [16]MCINTOSH G E, LOMBARD D S, MARTINDALE D L, et al. Cost effective use of liquid nitrogen in cryogenic wind tunnels, NASA CR??178279 [R]. Washington, DC, USA: National Aeronautics and Space Administration, 1987. |
[7] | YAN Na, LI Yanzhong. New air separation system by using cold energy of liquefied natural gas [J]. Chemical Engineering, 2007, 35(9): 58??61. |
[8] | [18]燕娜, 厉彦忠. 采用液化天然气(LNG)冷量的液体空分新流程及其分析 [J]. 低温工程, 2007, 156(2): 40??45. |
[9] | YAN Na, LI Yanzhong. Scheme analysis on the liquid product air separation plant using the cold energy of LNG [J]. Cryogenics, 2007, 156(2): 40??45. |
[10] | [4]FRANCO A, CASAROSA C. Thermodynamic analysis of direct expansion configurations for electricity production by LNG cold energy recovery [J]. Applied Thermal Engineering, 2015, 78(3): 649??657. |
[11] | [5]廖达雄, 黄知龙, 陈振华, 等. 大型低温高雷诺数风洞及其关键技术综述 [J]. 实验流体力学, 2014, 28(2): 1??6. |
[12] | LIAO Daxiong, HUANG Zhilong, CHEN Zhenhua, et al. Review on large??scale cryogenic wind tunnel and key technologies [J]. Journal of Experiments in Fluid Mechanics, 2014, 28(2): 1??6. |
[13] | [8]KIM T S, RO S T. Power augmentation of combined cycle power plants using cold energy of liquefied natural gas [J]. Energy, 2000, 25(9): 841??856. |
[14] | [9]MESSINEO A, PANNO D. Potential applications using LNG cold energy in Sicily [J]. Int J Energy Res, 2008, 32(11): 1058??1064. |
[15] | [13]JANSEN S, WOUDSTRA N. Understanding the exergy of cold: theory and practical examples [J]. Int J Exergy, 2010, 7(6): 693??713. |
[16] | [14]赵原伟. LNG卫星站冷量在建筑空调中的应用技术研究 [D]. 广州: 华南理工大学, 2014. |
[17] | [3]G?VMEZ M R, GARCIA R F, G?VMEZ J R, et al. Review of thermal cycles exploiting the exergy of liquefied natural gas in the regasification process [J]. Renewable and Sustainable Energy Reviews, 2014, 38(10): 781??795. |
[18] | [17]燕娜, 厉彦忠. 采用液化天然气冷量的空分系统新流程 [J]. 化学工程, 2007, 35(9): 58??61. |
[19] | [10]NAKAIWA M, AKIYA T, OWA M, et al. Evaluation of an energy supply system with air separation [J]. Energy Convers Manage, 1996, 37(3): 295??301. |
[20] | [11]WANG P, CHUNG T S. A conceptual demonstration of freeze desalination??membrane distillation (FD??MD) hybrid desalination process utilizing liquefied natural gas (LNG) cold energy [J]. Water Res, 2012, 46(13): 4037??4052. |
[21] | [12]KIM H, HONG S. Review on economical efficiency of LNG cold energy use in South Korea [C]∥23rd World Gas Conference. Amsterdam, Holland: International Gas Union, 2006: 2885??2895. |
[22] | [15]CAO Wensheng, BEGGS C, MUJTABA I M. Theoretical approach of freeze seawater desalination on flake ice maker utilizing LNG cold energy [J]. Desalination, 2015, 355(1): 22??32. |