全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

嵌套型开缝圆管声子晶体的带隙影响因素研究
Factors Influencing Band Gaps of the Nested Periodical Slit Metal Tubes

DOI: 10.7652/xjtuxb201604019

Keywords: 声子晶体,低频带隙,嵌套型开缝管,玻璃棉,噪声控制
phononic crystal
,low-frequency band gap,nested periodical slit metal tubes,glass wool,noise control

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对开缝管声子晶体结构的带隙起始频率较高和带隙不易调节的问题,基于亥姆霍兹共鸣效应,提出了一种嵌套型开缝圆管声子晶体结构,为了研究该结构的带隙影响因素,根据Bloch定理和Helmholtz方程,利用有限元法对该结构的禁带和透射系数进行了数值计算并搭建实验台进行了实验验证,获得了在晶格常数不变情况下该结构的带隙影响因素和禁带调节方法。研究结果表明,嵌套型开缝圆管结构具有低频禁带特点,能够在500 Hz左右得到宽禁带。在晶格常数恒定的条件下,内管缝向和位置参数对结构的低频禁带具有有效的调节作用,能够将低频禁带起始频率降低到250 Hz,其原理为产生并增强亥姆霍兹共鸣效应,因此这种禁带调节方法在声子晶体制备后仍然能够实现多频段、宽频带的带隙调节。同时,玻璃棉能够有效地增强嵌套型开缝管声子晶体结构的吸声性能,并对拓宽禁带有积极的效果。该研究成果为开缝管声子晶体的禁带调节提供了理论依据和有效方法,在低频噪声控制方面具有潜在的应用前景。
The band gap starting frequency of periodical slit metal tubes is higher and the band gap is difficult to modulate. A nested structure with periodical slit metal tubes is designed based on Helmholtz resonators. According to the Bloch theorem and the Helmholtz equation, the band gap characteristics of the proposed nested structure are investigated theoretically and experimentally. The results show that the phononic crystal possesses wide band gap in low??frequency range. Frequency position and width of band gap can be effectively modulated by the angle and the relative position between the inner and outer slit metal tubes without changing the lattice constant. The lowest frequency falls to 250 Hz. Glass wool strongly attenuates the acoustic wave and broaden the band gaps. The band gap can even be modulated after the preparation of the nested periodical slit metal tubes

References

[1]  [7]ZHANG S, HUA J, CHENG J C. Experimental and theoretical evidence for the existence of broad forbidden gaps in the three??component composite [J]. Chinese Physical Letters, 2003, 20(8): 1303??1305.
[2]  [14]RYLANDER T, JIN J M. Perfectly matched layer for the time domain finite element method [J]. Journal of Computational Physics, 2004, 200(1): 238??250.
[3]  [15]BASU U, CHOPRA A K. Perfectly matched layers for time??harmonic elastodynamics of unbounded domains: theory and finite??element implementation [J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(11): 1337??1375.
[4]  [16]温熙森, 温激鸿, 郁殿龙, 等. 声子晶体 [M]. 北京: 国防工业出版社, 2009: 139??146.
[5]  [17]CABALLERO D, SANCHEZ??DEHESA J, RUBIO C, et al. Large two??dimensional sonic band gaps [J]. Physical Review: E, 1999, 60(6): 6316??6319.
[6]  [18]WANG X H, GU B Y, LI Z Y, et al. Large absolute photonic band gaps created by rotating noncircular rods in two??dimensional lattices [J]. Physical Review: B, 1999, 60(16): 11417??11421.
[7]  [19]QIU M, HE S. Large complete band gap in two??dimensional photonic crystals with elliptic air holes [J]. Physical Review: B, 1999, 60(15): 10610??10612.
[8]  [4]SU Xiaoyang. Ultrasound tunneling through 3D phononic crystals [J]. Phys Rev Lett, 2002, 88(10): 104301.
[9]  [5]MARTIN H. Small??size sonic crystals with strong attenuation bands in the audible frequency range [J]. Applied Physics Letters, 2004, 84(17): 3364??3366.
[10]  [6]GARCIA??PABLOS D, SIGALAS M, DE ESPINOSA F R M, et al. Theory and experiments on elastic band gaps [J]. Physical Review Letters, 2000, 84(19): 4349??4352.
[11]  [8]HU X H, CHAN C T. Two??dimensional sonic crystals with Helmholtz resonators [J]. Physical Review: E, 2005, 71(5): 055601.
[12]  [9]WANG Z G, SAM H L. Acoustic wave propagation in one??dimensional phononic crystals containing Helmholtz resonators [J]. Journal of Applied Physics, 2008, 103(6): 064907.
[13]  [10]马大猷. 亥姆霍兹共鸣器 [J]. 声学技术, 2002, 21(1): 2??3.
[14]  [11]王峥, 项端祈, 陈金京, 等. 建筑声学材料与结构 [M]. 北京: 机械工业出版社, 2006: 40??45.
[15]  MA Dayou. Helmholtz resonator [J]. Technical Acoustics, 2002, 21(1): 2??3.
[16]  [12]温激鸿, 韩小云, 王刚, 等. 声子晶体研究概述 [J]. 功能材料, 2003, 34(4): 364??367.
[17]  WEN Jihong, HAN Xiaoyun, WANG Gang, et al. Review of phononic crystals [J]. Journal of Functional Materials, 2003, 34(4): 364??367.
[18]  [13]SINGER I, TURKEL E. A perfectly matched layer for the Helmholtz equation in a semi??infinite strip [J]. Journal of Computational Physics, 2004, 201(2): 439??465.
[19]  [1]KAFESAKI M, SIGALAS M M. Wave guides in two??dimensional elastic wave band gap materials [J]. Phys: B, 2001, 296(1): 190??194.
[20]  [2]KUSHWAHA M S, HALEVI P, DOBRZYNSKI L, et al. Acoustic band structure of periodic composites [J]. Phys Rev Lett, 1993, 71(13): 2022??2025.
[21]  [3]CERVERA F, SANCHIS L, SANCHEZ??PEREZ J V, et al. Re??fractive acoustic devices for airborne sound [J]. Phys Rev Lett, 2002, 88(2): 023902.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133