|
- 2016
采用自适应无迹卡尔曼滤波器的车速和路面附着系数估计
|
Abstract:
针对车辆主动安全控制中的车速和路面附着系数这一关键信息,提出了一种实时估计该信息的滤波算法,同时建立了将包含时变噪声统计特性的七自由度非线性车辆动力学模型作为滤波算法的标称模型,以及一种自适应无迹卡尔曼滤波算法。该算法采用传统的无迹卡尔曼滤波器来估计车速和路面附着系数,同时利用次优Sage-Husa噪声估计器对系统的噪声统计特性进行实时更新,其中采用遗忘因子限制噪声估计器的记忆长度,使新近数据发挥重要作用,使陈旧数据逐渐被遗忘,从而解决了因系统标称模型误差、外界扰动等因素引起的噪声时变的问题。在不同路面条件下进行了多种工况的实验验证,并与无迹卡尔曼滤波器的估计结果进行对比分析,结果表明,该算法具有良好的鲁棒性,其估计精度高于无迹卡尔曼滤波器,且满足车辆主动安全控制系统的要求。
An adaptive unscented Kalman filter (AUKF) algorithm for estimating vehicle speed and tire??road adhesion coefficient, the essential information for the active safety systems, is proposed. 7-DoF nonlinear vehicle dynamics model containing varying statistical noise characteristics is established as the nominal model. To solve the effects from varying statistical noise characteristics on the estimation accuracy and stability, the proposed algorithm adopts the traditional unscented Kalman filter to estimate vehicle speed and tire??road adhesion coefficient, and the suboptimal Sage??Husa noise estimator is used to update the statistical noise characteristics of the system simultaneously, where the forgetting factor limits the memory length of noise estimator to enhance the role of the new data and to forget the old data gradually. In the real vehicle experiment environment, the performance of the proposed algorithm is verified and compared with that of unscented Kalman filter for a variety of maneuvers and road conditions. The tests indicate the better robustness and estimation accuracy of this AUKF algorithm, which meets the requirements of the active safety systems
[1] | GUO Hongyan, CHEN Hong, ZHAO Haiyan, et al. State and parameter estimation for running vehicle: recent developments and perspective [J]. Control Theory & Applications, 2013, 30(6): 661??672. |
[2] | [2]AYYOUB R, REZA Z, SABER F, et al. Cascaded dual extend Kalman filter for combined vehicle state estimation and parameter identification, SAE 2013??01??0691 [R]. Washington, DC, USA: SAE, 2013. |
[3] | LIN Cheng, ZHOU Fengjun, XU Zhifeng, et al. Estimation of vehicle status parameters based on compensation adaptive control algorithm [J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(11): 1??8. |
[4] | [1]郭洪艳, 陈虹, 赵海燕, 等. 汽车行驶状态参数估计研究进展与展望 [J]. 控制理论与应用, 2013, 30(6): 661??672. |
[5] | [3]林程, 周逢军, 徐志峰, 等. 基于补偿自适应控制算法的车辆状态参数估计 [J]. 农业机械学报, 2014, 45(11): 1??8. |
[6] | [4]XIAOSHUAI X, JINXI C, JIANXIAO Z. Vehicle state estimation using cubature Kalman filter [J]. International Journal of Vehicle Mechanics and Mobility, 2014, 49(9): 1497??1520. |
[7] | [5]包瑞新, 贾敏, EDOARDO S, 等. 基于扩展Kalman粒子滤波的汽车行驶状态和参数估计 [J]. 农业机械学报, 2015, 46(2): 301??306. |
[8] | BAO Ruixin, JIA Min, EDOARDO S, et al. Vehicle state and parameter estimation under driving situation based on extended Kalman particle filter method [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2): 301??306. |
[9] | [6]赵林辉, 刘志远, 陈虹. 车速和路面附着系数的滚动时域估计 [J]. 汽车工程, 2009, 32(6): 520??525. |
[10] | ZHAO Linhui, LIU Zhiyuan, CHEN Hong. The estimation of vehicle speed and tire??road adhesion coefficient using moving horizon strategy [J]. Automotive Engineering, 2009, 32(6): 520??525. |
[11] | [7]ANTONOV S, FEHN A, KUGI A. Unscented Kalman filter for vehicle state estimation [J]. International Journal of Vehicle Mechanics and Mobility, 2011, 49(9): 1497??1520. |
[12] | [8]HRGETIC M, DEUR J, IVANOVIC V, et al. Vehicle sideslip angle EKF estimator based on nonlinear vehicle dynamics model and stochastic tire forces modeling, SAE 2014??01??0144 [R]. Washington, DC, USA: SAE, 2014. |
[13] | [9]TSUNASHIMA H, MURAKAMI M, MIATA J. Vehicle and road state estimation using interacting multiple model approach [J]. Vehicle System Dynamics, 2006, 44(S): 750??758. |
[14] | [10]万莉, 刘焰春, 皮亦鸣. EKF、UKF、PF目标跟踪性能的比较 [J]. 雷达科学与技术, 2007, 5(1): 13??16. |
[15] | WAN Li, LIU Yanchun, PI Yiming. Comparing of target tracking performances of EKF, UKF and PF [J]. Radar Science and Technology, 2007, 5(1): 13??16. |
[16] | [11]MASATO A. Vehicle handling dynamics theory and application [M]. Amsterdam, Netherlands: Elsevier, 2009. |
[17] | [12]WAN E A, VANDER M R. The unscented Kalman filter for nonlinear estimation [C]∥Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing Communications, and Control Symposium. Piscataway, NJ, USA: IEEE, 2000: 153??158. |
[18] | [13]JULIER S J, UHLMANN J K. Unscented filtering and nonlinear estimation [J]. Proceedings of the IEEE, 2004, 92(30): 401??422. |
[19] | [14]SAGE A P, HUSA G W. Adaptive filtering with unknown prior statistics [C]∥Proceedings of Joint Automatic Control Conference. New York, USA: ASME, 1969: 760??769. |
[20] | [15]XIONG K, ZHANG H Y, CHAN C W. Performance evaluation of UKF??based nonlinear filtering [J]. Automatica, 2006, 42(2): 261??270. |
[21] | [16]WU Y X, HU D W, HU X P. Comments on performance evaluation of UKF??based nonlinear filtering [J]. Automatica, 2007, 43(3): 567??568. |
[22] | [18]全国汽车标准化技术委员会. GB/T 6323??1―1994汽车操纵稳定性试验方法: 蛇行试验 [S]. 北京: 中国标准出版社, 1994. |
[23] | [20]National Highway Traffic Safety Administration. A comprehensive experimental examination of test maneuvers that may induce on??road, untripped, light vehicle rollover??phase IV of NHTSA’s light vehicle rollover research program [R]. Washington, DC, USA: National Highway Traffic Safety Administration, 2002. |
[24] | [17]XIONG K, ZHANG H Y, CHAN C W. Author’s reply to “comments on ‘performance evaluation of UKF??Based nonlinear filtering’” [J]. Automatica, 2007, 43(3): 569??570. |
[25] | [19]British Standards Institution. ISO 3888??1―1999Passenger cars??test track for a severe lane??change manoeuvre: part 1Double??lane change [S]. New York, USA: American National Standards Institute, 1999. |