|
- 2016
一种采用相空间重构的多源数据融合方法
|
Abstract:
针对化工生产系统中状态监控变量数量庞大、冗余度高等问题,提出了一种采用相空间重构的多源数据融合方法。该方法首先根据互信息法和Cao方法分别求取相空间重构参数延迟时间和嵌入维数;然后,基于信息熵对自适应加权融合估计方法的融合目标函数进行改进,并利用社会认知优化算法确定各信息源的权重系数,实现多源数据融合;最后,通过实际化工生产系统的数据分析对所提方法进行有效性验证。实验结果表明,相比于传统方法,由该方法得到的重构相空间的信息更加完备,其信息量和平均峰值信噪比分别平均提高135.6%和40.6%。该方法为解决多源异类传感器数据融合问题提供了一种新思路。
A new fusion technology for multi??source data based on the phase space reconstruction is proposed to focus on the problem of multivariable and high redundancy of the condition monitoring variables in the chemical production system. Both the mutual information method and the Cao method are used to select the reconstruction parameters, the time delay and the embedding dimension. Then, the information entropy is employed to obtain an improved objective function in adaptive weighted fusion estimating method for multisource data fusion, and the weighting coefficients of various information sources are calculated by means of a social cognitive optimization algorithm. The effectiveness of the proposed method is verified by an analysis of one case study of real chemical plant data sets. The results and a comparison with the traditional method show that the proposed method gets improvements in the amount of information and average PSNR, respectively. It is concluded that the proposed method improves the completeness of the information of the reconstructed phase space and provides a new approach for the multi??source data fusion of heterogeneous sensors
[1] | CONG Rui, LIU Shulin, MA Rui. An approach to phase space reconstruction from multivariate data based on data fusion [J]. Acta Physica Sinica, 2008, 57(12): 7487??7493. |
[2] | [6]TAKENS F. Detecting strange attractors in turbulence [J]. Lecture Notes in Mathematics, 1981, 898: 366??381. |
[3] | [7]PALIT S K, MKHERJEE S, BHATTACHARYA D K. A high dimensional delay selection for the reconstruction of proper phase space with cross auto??correlation [J]. Neurocomputing, 2013, 113: 49??57. |
[4] | [9]张继国, 辛格. 信息熵: 理论与应用 [M]. 北京: 中国水利水电出版社, 2012: 35??46. |
[5] | [11]MA Li, WANG Rongxi, CHEN Yanpin. The Social cognitive optimization algorithm: modifiability and application [C]∥Proceedings of International Conference on E??Produce E??Service and E??Entertainment. Piscataway, NJ, USA: IEEE, 2010: 1??4. |
[6] | LIU Guixi, YANG Wanhai. A wavelet decomposition based image fusion scheme and its performance evaluation [J]. Acta Automatica Sinica, 2002, 28(6): 927??934. |
[7] | [8]SHANNON C E. A mathematical theory of communication [J]. The Bell System Technical Journal, 1948, 27(3): 379??423. |
[8] | [12]ZHANG Jianke, LIU Sanyang, WANG Rongxi. Control of chaotic systems by chaotic social cognitive optimization [J]. ICIC Express Letters, 2011, 5(3): 693??699. |
[9] | [13]刘贵喜, 杨万海. 基于小波分解的图像融合方法及性能评价 [J]. 自动化学报, 2002, 28(6): 927??934. |
[10] | [2]BIN Guangfu, JIANG Zhinong, LI Xuejun, et al. Weighted multi??sensor data level fusion method of vibration signal based on correlation function [J]. Chinese Journal of Mechanical Engineering, 2011, 24(5): 899??904. |
[11] | [3]GARCIA S P, ALMEIDA J S. Multivariate phase space reconstruction by nearest neighbor embedding with different time delays [J]. Physical Review: E, 2005, 72(2): 027205. |
[12] | [4]WANG Rongxi, GAO Jianmin, GAO Zhiyong, et al. Data fusion based phase space reconstruction from multi??time series [J]. International Journal of Database Theory and Application, 2015, 8(6): 101??110. |
[13] | [1]张品, 董为浩, 高大冬. 一种优化的贝叶斯估计多传感器数据融合方法 [J]. 传感技术学报, 2014(5): 643??648. |
[14] | ZHANG Pin, DONG Weihao, GAO Dadong. An optimal method of data fusion for multi??sensors based on Bayesian estimation [J]. Chinese Journal of Sensors and Actuators, 2014, 27(5): 643??648. |
[15] | [5]从蕊, 刘树林, 马锐. 基于数据融合的多变量相空间重构方法 [J]. 物理学报, 2008, 57(12): 7487??7493. |
[16] | [10]XIE Xiaofeng, ZHANG Wenjun, YANG Zhilian. Social cognitive optimization for nonlinear programming problem [C]∥Proceedings of International Conference on Machine Learning and Cybernetics. Piscataway, NJ, USA: IEEE, 2002: 779??783. |