|
- 2016
制冷系统自抗扰解耦控制
|
Abstract:
针对制冷系统具有非线性、强耦合、大时滞且难以建立精确数学模型等特点,设计了一种改进的自抗扰解耦控制器。首先,通过引入线性修正项设计了非齐次有限时间收敛的扩张状态观测器,保证了观测器误差在有限时间内能够快速收敛到0,进而通过构造Lyapunov函数证明了其有限时间收敛的特性;采用静态解耦方法将制冷系统解耦为两个单输入、单输出系统,实现了制冷系统过热度和蒸发温度的独立控制;最后,利用改进的扩张状态观测器估计动态耦合和其他扰动并补偿到非线性误差反馈控制中,实现了制冷系统的动态解耦并改善了控制效果。仿真结果表明,该控制器不仅能较好实现解耦并具有良好的动态特性,而且具有更好的抗扰性和较强的鲁棒性,同时约有2%的节能效果。
Because the refrigeration systems are normally with such features as nonlinearity, strong coupling and large delay and it is difficult to establish precise mathematical models for them, an improved active disturbance rejection controller(ADRC) with decoupling control algorithm is proposed. First, a non??homogeneous finite??time convergent extended state observer (ESO) is designed by adding linear correction terms to the algorithm to ensure that the observer error converges to 0 quickly in a finite time. Then its finite??time convergent property is proved by using a Lyapunov function. A static decoupling process is applied to decouple the refrigeration system into two single??input and single??output systems, realizing the independent control over the superheat and evaporation temperature of the refrigeration system. The dynamic coupling and other disturbances are estimated by the improved ESO and compensated to the nonlinear error feedback control, which achieves the dynamic decoupling of the refrigeration system and improves the control results. Simulation results reveal that the proposed method realizes a better decoupling control with good dynamic characteristics, better disturbance rejection and robustness. Moreover, it saves about 2% energy
[1] | [3]RASMUSSEN H, LARSEN L F S. Non??linear and adaptive control of a refrigeration system [J]. IET Control Theory & Applications, 2011, 5(2): 364??378. |
[2] | BAI Jianbo, ZHENG Yu, MIAO Guochang. Self??tuning control algorithm with SMITH predictor for HVAC systems [J]. CIESC Journal, 2012, 63(S2): 100??105. |
[3] | [8]韩京清. 自抗扰控制器及其应用 [J]. 控制与决策, 1998, 13(1): 19??23. |
[4] | HAN Jingqing. Auto??disturbances??rejection controller and its applications [J]. Control and Decision, 1998, 13(1): 19??23. |
[5] | [15]王世峰, 赵党军. 基于有限时间收敛ESO的四旋翼无人机控制 [J]. 中南大学学报(自然科学版), 2015, 46(7): 2494??2503. |
[6] | WANG Shifeng, ZHAO Dangjun. Quad??rotor vehicle control based on finite??time convergent ESO [J]. Journal of Central South University (Science and Technology), 2015, 46(7): 2494??2503. |
[7] | [2]SHAH R, P RASMUSSEN B, ALLEYNE A G. Application of a multivariable adaptive control strategy to automotive air conditioning systems [J]. International Journal of Adaptive Control and Signal Processing, 2004, 18(2): 199??221. |
[8] | [9]LEVANT A. Non??homogeneous finite??time??convergent differentiator [C]∥The 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference. Piscataway, NJ, USA: IEEE, 2009: 16??18. |
[9] | [10]WANG X, LIN H. Design and analysis of a continuous hybrid differentiator [J]. IET Control Theory & Applications, 2011, 5(11): 1321??1334. |
[10] | [11]ORLOV Y, AOUSTIN Y, CHEVALLEREAU C. Finite time stabilization of a perturbed double integrator: IContinuous sliding mode??based output feedback synthesis [J]. IEEE Transactions on Automatic Control, 2011, 56(3): 614??618. |
[11] | [12]DE LOZA A F, CIESLAK J, HENRY D, et al. Sensor fault diagnosis using a non??homogeneous high??order sliding mode observer with application to a transport aircraft [J]. IET Control Theory & Applications, 2015, 9(4): 598??607. |
[12] | [13]李兆博, 吴爱国, 何熠. 制冷系统的改进Smith预估补偿和解耦控制 [J]. 控制理论与应用, 2013, 30(1): 111??117. |
[13] | LI Zhaobo, WU Aiguo, HE Yi. Improved Smith predictive compensation and decoupling in refrigeration system [J]. Control Theory & Applications, 2013, 30(1): 111??117. |
[14] | [14]YU S, YU X, SHIRINZADEH B, et al. Continuous finite??time control for robotic manipulators with terminal sliding mode [J]. Automatica, 2005, 41(11): 1957??1964. |
[15] | [16]王丽君, 童朝南, 李擎, 等. 实用自抗扰控制在大时滞厚度自动监控系统中的应用 [J]. 控制理论与应用, 2012, 29(3): 368??374. |
[16] | [1]RASMUSSEN B P, ALLEYNE A G. Gain scheduled control of an air conditioning system using the Youla parameterization [J]. IEEE Transactions on Control Systems Technology, 2010, 18(5): 1216??1225. |
[17] | [4]SCHURT L C, HERMES C J L, NETO A T. A model??driven multivariable controller for vapor compression refrigeration systems [J]. International Journal of Refrigeration, 2009, 32(7): 1672??1682. |
[18] | [5]ZHANG Q, CANOVA M, RIZZONI G. Sliding mode control of an automotive air conditioning system [C]∥American Control Conference. Piscataway, NJ, USA: IEEE, 2013: 5748??5753. |
[19] | [6]田健, 朱瑞琪, 冯全科. 风冷制冷机组的多变量模糊控制研究 [J]. 西安交通大学学报, 2006, 40(5): 514??517. |
[20] | TIAN Jian, ZHU Ruiqi, FENG Quanke. Study on multi??variable fuzzy neural control for air cooled refrigeration system [J]. Journal of Xi’an Jiaotong University, 2006, 40(5): 514??517. |
[21] | [7]白建波, 郑宇, 苗国厂. 暖通空调系统基于SMITH预估自校正控制算法 [J]. 化工学报, 2012, 63(S2): 100??105. |
[22] | WANG Lijun, TONG Chaonan, LI Qing, et al. Practical active disturbance rejection solution for monitoring automatic gauge control system with large time??delay [J]. Control Theory & Applications, 2012, 29(3): 368??374. |