|
- 2015
谱元方法求解对流扩散方程及其稳定性分析
|
Abstract:
探讨了一维对流扩散方程的一种高精度数值解法,该解法在空间上采用了Chebyshev谱元方法,在时间上结合了半隐式Adams方法。通过数值算例验证了解法的可行性,利用特征分析法得到了对流扩散方程谱元求解时不同离散形式的稳定性条件,并对数值求解的稳定性进行了预测。通过时间步长、网格划分、对流项和黏性项插值阶数的影响研究表明:耦合Chebyshev谱元方法和半隐式Adams方法在求解对流扩散方程时能够获得高精度的数值解;时间离散时Adams方法的黏性项采用一阶插值形式、对流项采用二阶插值形式,在未增加计算量的同时能够获得较大的稳定区域和较高的计算精度。
The Chebyshev spectral element method combining with the semi??implicit Adams method is presented for solving the one??dimensional convection??diffusion equation, and the feasibility is verified by a numerical example. The stability condition of different discrete forms of spectral element method is deduced with character analysis, and the influences of time step, grid partitioning, interpolation order of convective and viscous terms are discussed. It is demonstrated that numerical solution with high accuracy can be gained with the coupled spectral element and semi??implicit Adams method for the convection??diffusion equation. Larger stability domain and higher accuracy can be achieved without extra??calculation as first??order viscous terms and second??order convective terms are interpolated in Adams method
[1] | [3]GOTTLIEB D, ORSZAG S A. Numerical analysis of spectral method: theory and application [M]. Philadelphia, PA, USA: SIAM, 1977: 139??143. |
[2] | QIN Guoliang, XU Zhong. A spectral element method for incompressible Navier??Stokes equations [J]. Chinese Journal of Applied Mechanics, 2000, 17(4): 20??26. [9]陈雪江, 秦国良, 徐忠. 谱元法和高阶时间分裂法求解方腔顶盖驱动流 [J]. 计算力学学报, 2002, 19(3): 281??285. |
[3] | CHEN Xuejiang, QIN Guoliang, XU Zhong. Spectral element method and high order splitting method for Navies??Stokes equation [J]. Chinese Journal of Computational Mechanics, 2002, 19(3): 281??285. |
[4] | [13]VAN DORSSELAER J L M, HUNDSDORFER W. Stability estimates based on numerical ranges with an application to a spectral method [J]. BIT Numerical Mathematics, 1994, 34(2): 228??238. |
[5] | [1]GE L X, ZHANG J. High accuracy iterative solution of convection diffusion equation with boundary layers on nonuniform grids [J]. Journal of Computational Physics, 2001, 171(2): 560??578. |
[6] | [8]秦国良, 徐忠. 谱元方法求解二维不可压缩Navier??Stokes方程 [J]. 应用力学学报, 2000, 17(4): 20??26. |
[7] | [12]ERCILIA S. The controversial stability analysis [J]. Applied Mathematics and Computation, 2003, 145(2/3): 777??794. |
[8] | [2]ZIENKIEWICZ O C, HEINRICH J C. The finite element method and convection problems in fluid mechanics [M]. New York, USA: John Wiley & Sons Inc., 1978: 1??22. |
[9] | [4]MOFID A, PEYRET R. Stability of the Chebyshev collocation approximation to the advection??diffusion equation [J]. Computers Fluids, 1993, 22(4/5): 453??465. |
[10] | [5]PETERA A T. A spectral element method for fluid dynamics: laminar flow in a channel expansion [J]. Journal of Computational Physics, 1984, 54(3): 468??488. |
[11] | [6]FISCHER P, MULLEN J. Filter??based stabilization of spectral element methods [J]. Comptes Rendus de L’Académie des Sciences, 2001, 332(3): 265??270. |
[12] | [7]XU C J, PSAQUETTI R. Stabilized spectral element computations of high Reynolds number incompressible flows [J]. Journal of Computational Physics, 2004, 196(2): 680??704. |
[13] | [10]WILLIAM GEAR C. Numerical initial value problem in ordinary differential equations [M]. Englewood Cliffs, NJ, USA: Prentice??Hall Inc., 1973: 147??158. |
[14] | [11]张家忠. 非线性动力系统的运动稳定性、分岔理论及其应用 [M]. 西安: 西安交通大学出版社, 2010: 12??19. |