|
- 2016
合成射流激励位置对控制翼型大攻角分离流动影响的数值研究
|
Abstract:
针对合成射流的激励位置这一因素,以NACA0015翼型为研究对象,对大攻角(α=20°)下基于弦长的Re为8.96×105、单个合成射流激励位于翼型吸力面不同位置时的流场进行了二维非定常计算,并利用本征正交分解(POD)方法对计算结果进行了分析,阐释了相关控制机理。研究表明,合成射流的激励位置对翼型流动分离的控制效果有显著影响。当激励位置位于0.12至0.4倍弦长之间时,合成射流激励能有效抑制翼型流动分离,提升升力系数,降低阻力系数,升阻比最高提升293%,其中最优激励位置并不在普遍认为的控制前时均分离点附近,而在离分离点下游一定距离的分离区内部。对计算结果的POD分析表明,合成射流的引入改变了流场不同模态间的能量分配,能量由代表平均流动的一阶模态向代表流场中湍流大尺度结构的二阶及更高阶模态转移。合成射流的最佳激励位置与控制前流场二阶模态翼型吸力面附近的特征涡结构有关,要达到最佳的控制效果,合成射流激励应放置在特征涡结构的位置,若布置在下游或者较远的上游位置,则无控制效果。
For a NACA0015 airfoil, 2??D unsteady flow fields are calculated when a synthetic jet is put at different locations on the suction surface at a large attack angle (α=20°) and Reynolds number of 8.96×105 based on chord length. POD (proper orthogonal decomposition) method is utilized to analyze the computation results, and relevant control mechanisms are explained. The results show that actuation location of a synthetic jet exerts significant influence on effects of flow separation control. When the actuator is located between 0.12 and 0.40 of chord length, flow separation on the airfoil is effectively suppressed, enhancing lift coefficient and reducing drag coefficient with lift to drag ratio increasing by 293%. The optimal location is not near the time??averaged separation point as widely suggested but at some downstream locations inside the separation zone. POD analysis on computation results indicates that the introduction of synthetic jets would change the energy distribution among different modes, and that energy is transferred from 1st??order mode representing mean flow to 2nd??order mode or higher modes which represent large scale coherent structures. The best location for synthetic jet actuation is closely related to the site of a characteristic vortex on the suction side of the airfoil in 2nd??order mode. In order to reach optimal control effects, synthetic actuation should be located within the covering range of the characteristic vortex. It is ineffective to put a synthetic jet at downstream or far upstream of the location of that vortex
[1] | [5]李斌斌. 合成射流及在主动流动控制中的应用 [D]. 南京: 南京航空航天大学, 2012. |
[2] | [6]WILTSE J M, GLEZER A. Manipulation of free shear flows using piezoelectric actuators [J]. Journal of Fluid Mechanics, 1993, 249: 261??285. |
[3] | [8]WHITEHEAD J, GURSUL I. Interaction of synthetic jet propulsion with airfoil aerodynamics at low Reynolds numbers [J]. AIAA Journal, 2006, 44(8): 1753??1766. |
[4] | LI Yujie, LUO Zhenbing, DENG Xiong, et al. Experimental investigation on flow separation control of stalled NACA0015 airfoil using dual synthetic jet actuator [J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3): 817??825. |
[5] | [14]CHAPIN V G, BENARD E. Active control of a stalled airfoil through steady or unsteady actuation jets [J]. Journal of Fluid Engineering, 2015, 37: 091103. |
[6] | [18]DONOVAN J F, KRAL L D, CARY A W. Active flow control applied to an airfoil [C]∥36th AIAA Aerospace Sciences Meeting and Exhibit. Reno, NV, USA: AIAA, 1998: 210. |
[7] | [20]SIROVICH L. Turbulence and the dynamics of coherent structures: part ICoherent structures [J]. Quarterly of Applied Mathematics, 1987, 45(3): 561??571. |
[8] | [3]GLEZER A, AMITAY M. Synthetic jets [J]. Annual Review of Fluid Mechanics, 2002, 34(1): 503??529. |
[9] | [11]HE Y, CARY A W, PETERS D A. Parametric and dynamic modeling for synthetic jet control of a post??stall airfoil [C]∥39th Aerospace Sciences Meeting and Exhibit. Reno, NV, USA: AIAA, 2001: 733. |
[10] | [12]RAJU R, MITTAL R, CATTAFESTA L N. Towards physics based strategies for separation control over an airfoil using synthetic jets[R]. Reno, NV, USA: AIAA, 2007: 1421. |
[11] | [13]李玉杰, 罗振兵, 邓雄, 等. 合成双射流控制NACA0015翼型大攻角流动分离试验研究 [J]. 航空学报, 2016, 37(3): 817??825. |
[12] | [19]LUMLEY J L. Stochastic tools in turbulence [M/OL]. [2016??01??10]. http:∥www??overdrive??com/1749883/stochastic??tools??in??turbulence. |
[13] | [21]CHEN H, REUSS D L, HUNG D L S, et al. A practical guide for using proper orthogonal decomposition in engine research [J]. International Journal of Engine Research, 2013, 14(4): 307??319. |
[14] | [1]VAN DEN BERG B, OSKAM B. Boundary layer measurements on a two??dimensional wing with flap and a comparison with calculations [R]. Amsterdam, Netherlands: National Aerospace Lab. , 1980. |
[15] | [2]JIRASEK A. A modified vortex generator model and its application to complex aerodynamic flows [R/OL]. [2015??12??25]. http: ∥www. foi. se/RepovtFiles/foir_1204. pdf. |
[16] | [4]张攀峰, 王晋军, 冯立好. 零质量射流技术及其应用研究进展 [J]. 中国科学: E 辑, 2008, 38(3): 321??349. |
[17] | ZHANG Panfeng, WANG Jinjun, FENG Lihao. Zero??net??mass??flux jet techniques and its research progress [J]. Science in China: E, 2008, 38(3): 321??349. |
[18] | [7]ZEIGERM M. Distributed hingeless flow control and rotary synthetic jet actuation [C]∥42nd AIAA Aerospace Sciences Meeting and Exhibit. Reno, NV, USA: AIAA, 2004: 224. |
[19] | [9]刘小波, 张伟伟, 蒋跃文, 等. 尾缘合成射流影响翼型非定常气动特性的数值研究 [J]. 空气动力学学报, 2012, 30(5): 606??612. |
[20] | LIU Xiaobo, ZHANG Weiwei, JIANG Yuewen, et al. Numerical study on unsteady aerodynamic characteristics of an airfoil with a synthetic jet set in trailing edge [J]. Acta Aerodynamica Sinica, 2012, 30(5): 606??612. [10]SEIFERT A, DARABI A, WYGANSKI I. Delay of airfoil stall by periodic excitation [J]. Journal of Aircraft, 1996, 33(4): 691??698. |
[21] | [15]DURAISAMY K, BAEDER J D. Active flow control concepts for rotor airfoils using synthetic jets [C]∥1st Flow Control Conference. Reno, NV, USA: AIAA, 2002: 2835. |
[22] | [16]REHMAN A, KONTIS K. Synthetic jet control effectiveness on stationary and pitching airfoils [J]. Journal of Aircraft, 2006, 43(6): 1782??1789. |
[23] | [17]GILARRANZ J L, TRAUB L W, REDINIOTIS O K. A new class of synthetic jet actuators: part IIApplication to flow separation control [J]. Journal of Fluids Engineering, 2005, 127(2): 377??387. |