全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

燃气透平叶片尾缘开缝结构冷却性能的数值研究
Numerical Investigations on the Cooling Performance of Trailing Edge Cutback in Gas Turbine Blade

DOI: 10.7652/xjtuxb201603005

Keywords: 尾缘开缝,耦合传热,吹风比,唇厚
trailing edge cutback
,conjugate heat transfer,blowing ratio,lip thickness

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用包含流体域和固体域的耦合传热数值求解方法,研究了压力侧开缝结构对典型燃气透平叶片尾缘冷却性能的影响,并利用已有的实验数据考核了数值方法的有效性和精度。通过计算获得了不同冷气量、开缝唇厚条件下尾缘部位的冷却性能。结果表明:在所考核的3种涡黏湍流模型中,标准k?拨赝牧髂P涂梢越虾玫啬D庖镀?尾缘的冷却性能;采用流固耦合传热计算方法可以较好地模拟尾缘开缝出口区域冷却气体的温度分布;增大吹风比可以有效加强内部冷却通道内的对流换热,并增大尾缘开缝出口区域的气膜冷却系数;开缝的高度固定时,唇厚越大,狭缝出口台阶处形成的旋涡尺度增大,减轻了主流流体对狭缝出口壁面的直接冲击,导致狭缝出口区域的总体冷却效果稍微提高,但整体流动损失增大。
A conjugate heat transfer method, which takes both the fluid and solid domains into consideration, was utilized to investigate the effect of pressure side cutback geometry on the cooling performance in a typical gas turbine blade. In order to validate the present numerical methods, the computed film cooling coefficient and pressure were compared with the experimental data. After the reliability and accuracy of the numerical method have been demonstrated, the influence of blowing ratio and lip thickness on the cooling performance was studied in detail. It shows that, among the selected three standard k?拨? turbulence model, k-ω turbulence model and SST k-ω turbulence model, the k-ω turbulence model has superior accuracy in predicting the cooling performance of the blade trailing edge cutback. The conjugate heat transfer method considering both fluid domain and solid domain could properly resolve the temperature distributions near the cutback lip. As the blowing ratio increases, the convection heat transfer in the blade cutback channel is enhanced, and the corresponding film cooling coefficients are increased at the cutback outlet. If the height of the ejection slot is fixed, the scale of the vortices at the slot exit is increased with the increase of lip thickness. Such flow pattern reduces the impact effect of mainstream to the trailing edge cutback, which leads to a slight improvement of the overall cooling effectiveness at the cutback outlet region. However, the loss coefficient of the whole flow region is inevitably increased

References

[1]  [2]MARTINI P, SCHULZ A, WHITNEY C F, et al. Experimental and numerical investigation of trailing edge film cooling downstream of a slot with internal rib arrays [J]. Proceedings of the Institution of Mechanical Engineers: Part AJournal of Power and Energy, 2003, 217(4): 393??401.
[2]  [3]TASLIM M E, SPRING S D, MEHLMANN B P, et al. An experimental investigation of film cooling effectiveness for slots of various exit geometries [C]∥26th AIAA/SAE/ASME/ASEE Joint Propulsion Conference. Reston, VA, USA: AIAA, 1990: 2266.
[3]  [4]HOLLOWAY D S, LEYLEK J H, BUCK F A, et al. Pressure side bleed film cooling: part 2unsteady framework for experimental and computational results, GT2002??30472 [R]. New York, USA: ASME, 2002.
[4]  [5]AMES F, FIALA N, JOHNSON J, et al. Gill slot trailing edge heat transfer: effects of blowing rate, Reynolds number, and external turbulence on heat transfer and film cooling effectiveness, GT2007??27397 [R]. New York, USA: ASME, 2007.
[5]  [6]FIALA N, JASWAL I, AMES F, et al. Letterbox trailing edge heat transfer: effects of blowing rate, Reynolds number, and external turbulence on heat transfer and film cooling effectiveness, GT2008??50474 [R]. New York, USA: ASME, 2008.
[6]  [8]MARTINI P, SCHULZ A, BAUER H J, et al. Film cooling effectiveness and heat transfer on the trailing edge cut??back of gas turbine airfoils with various internal cooling designs [J]. ASME Journal of Turbomachinery, 2006, 128(1): 196??205.
[7]  XU Hongyan, ZHANG Jingzhou, TAN Xiaoming. Vortex cooling performance in internal cooling channel of turbine blade trailing edge [J]. Journal of Aerospace Power, 2014, 29(1): 59??66.
[8]  [12]周超, 常海萍, 崔德平, 等. 涡轮叶片尾缘斜劈缝气膜冷却数值模拟 [J]. 南京航空航天大学学报, 2006, 38(5): 583??589.
[9]  ZHOU Chao, CHANG Haiping, CUI Deping, et al. Numerical investigation of the cooling flow downstream of a turbine guide vane trailing edge slot [J]. Journal of Nanjing University of Aeronautics and Astronautics, 2006, 38(5): 583??589.
[10]  [13]王掩刚, 刘波, 姜健, 等. 涡轮叶片尾缘开缝喷气的数值模拟和试验研究 [J]. 航空动力学报, 2006, 21(3): 474??479.
[11]  WANG Yangang, LIU Bo, JIANG Jian, et al. Experiment and numerical simulation investigation of turbine blade with trailing edge ejection [J]. Journal of Aerospace Power, 2006, 21(3): 474??479.
[12]  [14]王掩刚, 刘波, 曹志鹏. 喷气流与栅后流场掺混及干扰效应的探讨 [J]. 推进技术, 2002, 23(3): 223??225.
[13]  [1]HORBACH T, SCHULZ A, BAUER H J, et al. Trailing edge film cooling of gas turbine airfoils??effects of ejection lip geometry on film cooling effectiveness and heat transfer [J]. Journal of Heat Transfer, 2010, 41(8): 849??865.
[14]  [7]MARTINI P, SCHULZ A. Experimental and numerical investigation of trailing edge film cooling by circular wall jets ejected from a slot with internal rib arrays [J]. ASME Journal of Turbomachinery, 2004, 126(2): 229??236.
[15]  [9]MARTINI P, SCHULZ A, BAUER H J, et al. Detached eddy simulation of film cooling performance on the trailing edge cut??back of gas turbine airfoils [J]. ASME Journal of Turbomachinery, 2006, 128(2): 292??299.
[16]  [10]EFFENDY M, YUFENG Y, JUN Y, et al. Comparison study of turbine blade with trailing??edge cutback coolant ejection designs [C]∥51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, VA, USA: AIAA, 2013: 0548.
[17]  [11]徐虹艳, 张靖周, 谭晓茗. 涡轮叶片尾缘内冷通道旋流冷却特性 [J]. 航空动力学报, 2014, 29(1): 59??66.
[18]  WANG Yangang, LIU Bo, CAO Zhipeng. Mixing process in symmetry trailing edge slot for a turbine blade [J]. Journal of Propulsion Technology, 2002, 23(3): 223??225.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133