全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

叶片有限元分析中弹塑性过渡区应力奇异产生原因及解决方法
Origin and Elimination of Stress Singularity in Blade Elasto??Plastic Transition Region in Finite Element Analysis

DOI: 10.7652/xjtuxb201509009

Keywords: 叶片,有限元,弹塑性过渡区,应力奇异
blade
,finite element method,elastic??plastic transition region,stress singularity

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用弹塑性有限元法、借助大型商业有限元软件对汽轮机叶片进行应力分析时,弹塑性过渡区应力的计算值有时会高于塑性区应力的计算值,即会产生应力奇异现象。为分析产生这一现象的原因,以8节点六面体单元为例,研究了有限元法计算应力的过程,并在理想弹塑性的条件下,采用有限元法和解析法计算了弹塑性过渡区单元节点应力。研究发现,有限元法通常采用高斯积分点应力值外推插值法得到单元节点应力,当单元一部分位于弹性区、另一部分位于塑性区时,这种外插算法会导致节点应力计算值高于结构的实际应力,甚至超出理想弹塑性材料的屈服极限,从而造成应力奇异。研究表明,在叶片弹塑性的有限元分析中,采用相邻高斯积分点应力加权平均的方法计算单元节点应力,可有效避免弹塑性过渡区应力产生奇异的现象。
When stresses of steam turbine blades are computed with the finite element method, sometimes the calculated stress in elasto??plastic transition region gets higher than the calculated stress in plastic region, namely there exits stress singularity. To explain this fact, the calculation process of nodal stress with finite element method is discussed in detail, where a kind of 8??node hexahedron element and an ideal elasto??plastic material model are chosen as the example. Nodal stresses of the elements in elasto??plastic transition region are comparatively calculated. It is found that in the finite element method the nodal stress is calculated via extrapolation of stresses at Gauss integration point in an element, and the calculated nodal stress maybe exceed the actual stress even the yield limit of ideal elasto??plastic material when one part of an element is located in elastic zone and the other part remains in plastic zone, thus stress singularity is brought out by the extrapolation algorithm. It is suggested that the nodal stresses are calculated in terms of weighted average stress at Gauss integration points of neighboring elements to effectively eliminate stress singularity

References

[1]  [1]王为民, 潘家成. 东方?踩樟⑿统?超临界1 000 MW汽轮机可靠性设计 [J]. 热力透平, 2006, 35(1): 8??12.
[2]  WANG Weimi, PAN Jiacheng. Reliability of ultra??supercritical 1 000 MW steam turbine designed by DFSTW and Hitachi [J]. Thermal Turbine, 2006, 35(1): 8??12.
[3]  [2]HISASHI F, HIROHARU O, TOSHIHIRO M, et al. Development of 3,600??rpm 50??inch/3,000??rpm 60??inch ultra??long exhaust end blades [J]. Mitsubishi Heavy Industries Technical Review, 2009, 46(2): 18??25.
[4]  [3]RAO J S, SURESH S. Blade root shape optimization [J]. Proceedings of Future of Gas Turbine Technology, 2006, 13(2): 1??11.
[5]  XU Zili, LI Xinyi, AN Ning, et al. Effect of relative factors on fatigue life for low pressure blades of steam turbines [J]. Power Engineering, 2004, 24(1): 33??36.
[6]  [5]SINCLAIR G B, CORMIER N G, GRIFFIN J H, et al. Contact stresses in dovetail attachments: finite element modeling [J]. ASME Journal of Engineering for Gas Turbines and Power, 2002, 124: 182??189.
[7]  [6]SINCLAIR G B, CORMIER N G. Contact stresses in dovetail attachments: alleviation via precision crowning [J]. ASME Journal of Engineering for Gas Turbines and Power, 2003, 125: 1033??1041.
[8]  [7]李彬, 宋立明, 李军, 等. 长叶片透平级多学科多目标优化设计 [J]. 西安交通大学学报, 2014, 48(1): 1??5.
[9]  LI Bin, SONG Liming, LI Jun, et al. Multidisciplinary and multi objective optimization design of long blade turbine stage [J]. Journal of Xi’an Jiaotong University, 2014, 48(1): 1??5.
[10]  [8]RAO J S, KISHORE C B, MAHADEVAPPA V. Weight optimization of turbine blades [C]∥Proceedings of the 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery. Honolulu, Hawaii, USA: Altair Engineering Inc., 2008: 1??19.
[11]  [9]MEˇSˇTˇ?NEK P. Low cycle fatigue analysis of a last stage steam turbine blade [J]. Applied and Computational Mechanics, 2008, 2(1): 71??82.
[12]  [10]ZIENKIEWICZ O C, TAYLOR R L, ZHU J Z. The finite element method: its basis and fundamentals [M]. 6th Edition. Oxford, UK: Butterworth??Heinemann, 2005: 462??467.
[13]  [4]徐自力, 李辛毅, 安宁, 等. 相关参数对汽轮机低压叶片疲劳寿命的影响 [J]. 动力工程, 2004, 24(1): 33??36.
[14]  [11]COOK R D, MALKUS D S, PLESHA M E, et al. Concepts and applications of finite element analysis [M]. 4th ed. New York, USA: Wiley, 2001: 198??200.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133