|
- 2015
利用高斯混合概率假设密度滤波器对扩展目标量测集进行划分
|
Abstract:
针对杂波环境下多扩展目标高斯混合概率假设密度(ET??GMPHD)量测集划分难、计算量大的问题,提出了一种新的基于网格密度分布和谱聚类的扩展目标量测集划分方法。利用动态网格生成技术来获得量测集的网格密度分布;在获得网格划分后,将全部量测数据映射到网格单元中并统计网格单元的密度,且采用双密度阀值法来滤除量测集中的杂波;在谱聚类算法中利用密度敏感距离测度对去除杂波后的量测集构造相似矩阵,继而变换得到拉普拉斯矩阵;利用k?簿?值聚类算法对拉普拉斯矩阵的特征向量进行聚类划分。采用网格密度划分法滤除量测集中的杂波,使划分子集尽可能多地包含真实量测,增加划分子集与量测集合的近似度,从而在减少计算量的同时保证算法的跟踪性能损失不大。仿真实验表明,与典型的量测集划分算法相比,所提方法在跟踪误差损失约5%的前提下,计算效率提高了38%以上,具有更好的性能。
A new measurement set partitioning based on grid density and spectral clustering is proposed to overcome the problem that it is impossible to implement all the possible partitioning of a measurement set by the filters with extended??target Gaussian mixture probability hypothesis density. Firstly, the dynamic grid generation technique is used to acquire the grid density of measurement set, then the double??density threshold is adopted to remove the clutters of measurements set. Lastly, the spectral clustering based on the sensitive distance is applied in partitioning the measurement set from which the clutters have been removed. Simulation results show that, compared with the typical partition algorithm of measurement set, though the tracking performance of the proposed algorithm loses 5%, the computational efficiency is increased by 38%
[1] | [4]ORGUNER U C, LUNDQUIST C, GRANSTROM K. Extended target tracking with a cardinalized probability hypothesis density filter [C]∥Proceedings of the 14th International Conference on Indormation Fusion. Piscataway, NJ, USA: IEEE, 2011: 5??8. |
[2] | [5]LIAN F, HAN C Z. Unified cardinalized probability hypothesis density filters for extended targets and unresolved targets [J]. Signal Processing, 2012, 92(7): 1729??1744. |
[3] | [6]ZHANG Y Q, JI H B. A novel fast partitioning algorithm for extended target tracking using a Gaussian mixture PHD filter [J]. Signal Processing, 2013, 93 (11): 2975??2985. |
[4] | [1]GRANSTROM K, LUNDQUIST C, ORGUNER U. Extended target tracking using a Gaussian??mixture PHD filter [J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3268??3286. |
[5] | [2]MAHLER R. PHD filters for nonstandard targets: I extended targets [C]∥Proceedings of the 12th International Conference on Information Fusion. Piscataway, NJ, USA: IEEE, 2009: 915??921. |
[6] | [3]GRANSTROM K, LUNDQUIST C, ORGUNER U. A Gaussian mixture PHD filter for extended target tracking [C]∥Proceedings of the 13th International Conference on Information Fusion. Piscataway, NJ, USA: IEEE, 2010: 1??8. |
[7] | [7]闫小喜, 韩崇昭, 李威, 等. 拓展目标量测集分割算法 [J]. 西安交通大学学报, 2014, 48(9): 19??23. |
[8] | YAN Xiaoxi, HAN Chongzhao, LI Wei, et al. A partition algorithm of measurement sets for extended objects [J]. Journal of Xi’an Jiaotong University, 2014, 48(9): 19??23. |
[9] | [8]瑚成祥, 刘贵喜, 董亮, 等. 区域杂波估计的多目标跟踪方法 [J]. 航空学报, 2014, 35(4): 1091??1101. |
[10] | HU Chengxiang, LIU Guixi, Dong Liang, et al. Region clutter estimation method for multi??target tracking [J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(4): 1091??1101. |
[11] | [9]王军, 张冰. 基于动态网格密度聚类的雷达信息分选算法 [J]. 现代电子技术, 2013, 11(1): 1??4. |
[12] | WANG Jun, ZHANG Bing. A radar signal sorting algorithm based on dynamic grid density clustering [J]. Modern Electronics Technique, 2013, 11(1): 1??4. |
[13] | [10]黄发良, 黄名选, 元昌安, 等. 网络重叠社区发现的谱聚类集成算法 [J]. 控制与决策, 2014, 29(4): 713??718. |
[14] | HUANG Faliang, HUANG Mingxuan, YUAN Chang’an, et al. Spectral clustering ensemble algorithm for discovering overlapping communities in social networks [J]. Control and Decision, 2014, 29(4): 713??718.[11]张亚平, 杨明. 一种基于密度敏感的自适应谱聚类算法 [J]. 数学的实践与认识, 2013, 43(20): 150??156. |
[15] | ZHANG Yaping, YANG Ming. A kind of density sensitive adaptive spectral clustering algorithm [J]. Mathematics in Practice and Theory, 2013, 43(20): 150??156. |
[16] | [12]TSAI C W, YANG C S, CHIANG M C. A time efficient pattern reduction algorithm for k??means based clustering [C]∥IEEE International Conference on Systems, Man and Cybernetics. Piscataway, NJ, USA: IEEE, 2007: 504??509. |
[17] | [13]LI Y X, XIAO H T, SONG Z Y. A new multiple extended target tracking algorithm using PHD filter [J]. Signal Processing, 2013, 93(7): 3578??3588. |