全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

超声对二氧化铅电极性质的影响
Effects of Ultrasonic Field on Characteristics of Lead Dioxide Electrodes

DOI: 10.7652/xjtuxb201507014

Keywords: 二氧化铅,超声,电极表面形貌,电极寿命,电催化,废水处理
PbO2
,ultrasonic,electrode surface morphology,electrode life,electro??catalysis,wastewater treatment

Full-Text   Cite this paper   Add to My Lib

Abstract:

为提高PbO2电极在电催化氧化废水处理中的稳定性及催化性能,在超声场中用电沉积方法制备了PbO2电极,采用扫描电镜、X射线衍射、强化寿命测试、线性扫描测试及电催化降解等手段对所得电极的组成和性能进行了表征,并与未使用超声场的常规制备PbO2电极进行了性能比较。结果表明:超声场对PbO2电极的表面形貌有一定影响,产生了较多花束状的凸起,增加了电极的真实表面积;超声法PbO2电极的强化寿命和电压稳定期分别为166和165 h,明显长于常规法PbO2电极的100.5和50 h,表明超声法PbO2电极的稳定性优于常规法PbO2电极;超声法PbO2电极的析氧电位为1.67 V,高于常规法PbO2电极的1.60 V,表明超声法PbO2电极对于析氧副反应具有一定的抑制作用,有利于提高其电催化性能;在扫描电势达到2.0 V时,超声法PbO2电极的电流密度响应值为0.018 3 A?cm-2,远高于常规法PbO2电极的0.006 85 A?cm-2,表明它的导电性能更好,有助于降低电极在电解过程中的能耗;在对酸性红G溶液的降解过程中,超声法PbO2电极的表现优于常规法PbO2电极,其准一级反应动力学常数和总有机碳去除率分别为0.019 7 min-1和15.6%,均高于常规法PbO2电极的相应值,而其能耗值却低于常规法PbO2电极。由此证明,超声场的引入可改善PbO2电极的稳定性和催化性能。
PbO2 electrodes were fabricated in the ultrasonic field by the electro??deposition to enhance their stability and catalytic performance in the electro??catalytic oxidation wastewater treatment. The composition and the performance of the electrode were investigated by SEM, XRD, the acceleration test and the electro??catalytic degradation test. The performances of the ultrasonic??PbO2 electrode were compared with that of the conventional PbO2 electrode. The results show that the surface morphology of PbO2 electrode is influenced by the ultrasonic field, and many flower??bunch??like bulges emerge on the surface of the electrode to increase its real surface area. The accelerated life and the voltage??stable period of the ultrasonic??PbO2 electrode are 166 h and 165 h, respectively, which are obviously longer than 100.5 h and 50 h of the conventional PbO2 electrode. The oxygen??evolution potential of the ultrasonic??PbO2 electrode is 1.67 V, which is higher than 1.60 V of the conventional PbO2 electrode. It indicates that the ultrasonic??PbO2 electrode has a good performance in suppression of oxygen??evolution and gives an improvement on the electro??catalytic performance. When the scanning electric potential reaches 2.0 V, the corresponding current density of the ultrasonic??PbO2 electrode is 0.018 3 A/cm2, which is higher than 0.006 85 A/cm2 of the conventional PbO2 electrode. This shows that the electro??conductivity of the former is better than that of the latter, which helps to reduce energy consumption in the electrolysis. The performance of the ultrasonic??PbO2 electrode is also better than that of the conventional PbO2 electrode in the degradation test of the acid red G solution. Its pseudo??first??order kinetics constant and total organic carbon removal rate are 0.019 7 min-1 and 15.6%, respectively, which are both higher than those of the conventional PbO2 electrode, while its energy consumption is lower than that of the conventional PbO2 electrode in

References

[1]  [1]WU Weiyi, HUANG Zhaohong, LIM T T. Recent development of mixed metal oxide anodes for electrochemical oxidation of organic pollutants in water [J]. Applied Catalysis: A General, 2014, 480(10): 58??78.
[2]  [2]CHAPLIN B P. Critical review of electrochemical advanced oxidation processes for water treatment applications [J]. Environmental Science: Processes & Impacts, 2014, 16(6): 1182??1203.
[3]  KONG Desheng, L?a Wenhua, FENG Yuanyuan, et al. Advances and some problems in electrocatalysis of DSA electrodes [J]. Progress in Chemistry, 2009, 21(6): 1107??1117.
[4]  [7]LI Xiaohong, PLETCHER D, WALSH F C. Electrodeposited lead dioxide coatings [J]. Chem Soc Rev, 2011, 40(7): 3879??3894.
[5]  [8]XU Hao, SHAO Dan, ZHANG Qian, et al. Preparation and characterization of PbO2 electrodes from electro??deposition solutions with different copper concentration [J]. RSC Advances, 2014, 48(4): 25011??25017.
[6]  [20]XU Hao, LI Jingjing, YAN Wei, et al. Preparation and characterization of titanium based PbO2 electrodes doped with some common elements [J]. Rare Metal Materials and Engineering, 2013, 42(5): 885??890.
[7]  [21]ZHAO Guohua, ZHANG Yonggang, LEI Yanzhu, et al. Fabrication and electrochemical treatment application of a novel lead dioxide anode with superhydrophobic surface, high oxygen evolution potential, and oxidation capability [J]. Environ Sci Technol, 2010, 44(5): 1754??1759.
[8]  [3]PANIZZA M, CERISOLA G. Direct and mediated anodic oxidation of organic pollutants [J]. Chemical Reviews, 2009, 109(12): 6541??6569.
[9]  [4]徐浩, 张倩, 邵丹, 等. 钛基体二氧化铅电极制备改性方法研究进展 [J]. 化工进展, 2013, 32(6): 1307??1312.
[10]  XU Hao, ZHANG Qian, SHAO Dan, et al. Advances in the preparation and modification of titanium??based PbO2 electrodes [J]. Chemical Industry and Engineering Progress, 2013, 32(6): 1307??1312.
[11]  [5]PATEL P S, BANDRE N, SARAF A, et al. Electro??catalytic materials (electrode materials) in electrochemical wastewater treatment [J]. Procedia Engineering, 2013, 51(1): 430??435.
[12]  [19]KONG Jiangtao, SHI Shaoyuan, KONG Lingcai, et al. Preparation and characterization of PbO2 electrodes doped with different rare earth oxides [J]. Electrochimica Acta, 2007, 53(4): 2048??2054.
[13]  [10]徐浩, 延卫, 常乐. Pb3O4层引入对钛基PbO2电极强化寿命的影响 [J]. 稀有金属材料与工程, 2012, 41(3): 462??466.
[14]  XU Hao, YAN Wei, CHANG Le. Effect of Pb3O4 layer introduction on the accelerated life of the Ti??PbO2 electrodes [J]. Rare Metal Materials and Engineering, 2012, 41(3): 462??466.
[15]  [11]HAN Weiqing, ZHONG Congqiang, LIANG Linyue, et al. Electrochemical degradation of triazole fungicides in aqueous solution using TiO2??NTs/SnO2??Sb/PbO2 anode: experimental and DFT studies [J]. Electrochimica Acta, 2014, 130(10): 179??186.
[16]  [12]王雅琼, 童宏扬, 许文林, 等. 超声对Ti/SnO2+Sb2O3/PbO2电极材料结构及电极性能的影响 [J]. 无机材料学报, 2004, 19(6): 1307??1312.
[17]  WANG Yaqiong, TONG Hongyang, XU Wenlin, et al. Effects of ultrasound on the microstructure and electrochemical behavior of Ti/SnO2+Sb2O3/PbO2 electrodes [J]. Journal of Inorganic Materials, 2004, 19(6): 1307??1312.
[18]  [13]徐浩, 延卫, 游莉. 不同酸处理对钛基体性能的影响 [J]. 稀有金属材料与工程, 2011, 40(9): 1550??1554.
[19]  XU Hao, YAN Wei, YOU Li. Effects of various acids treatment on the properties of titanium substrate [J]. Rare Metal Materials and Engineering, 2011, 40(9): 1550??1554.
[20]  [14]CHAI Shouning, ZHAO Guohua, WANG Yujing, et al. Fabrication and enhanced electrocatalytic activity of 3D highly ordered macroporous PbO2 electrode for recalcitrant pollutant incineration [J]. Applied Catalysis: BEnvironmental, 2014, 147(5): 275??286.
[21]  [15]LI Qin, ZHANG Qiu, CUI Hao, et al. Fabrication of cerium??doped lead dioxide anode with improved electrocatalytic activity and its application for removal of rhodamine B [J]. Chemical Engineering Journal, 2013, 228(7): 806??814.
[22]  [16]SHMYCHKOVA O, LUK’YANENKO T, VELICHENKO A, et al. Bi??doped PbO2 anodes: electrodeposition and physico??chemical properties [J]. Electrochimica Acta, 2013, 111(1): 332??338.
[23]  [17]YANG Weihua, YANG Wutao, LIN Xiaoyan. Research of PEG modified Bi??doping lead dioxide electrode and mechanism [J]. Applied Surface Science, 2012, 258(15): 5716??5722.
[24]  [18]JU Peng, FAN Hai, GUO Doudou, et al. Electrocatalytic degradation of bisphenol A in water on a Ti??based PbO2??ionic liquids (ILs) electrode [J]. Chemical Engineering Journal, 2012, 179(1): 99??106.
[25]  [6]孔德生, 吕文华, 冯媛媛, 等. DSA电极电催化性能研究及尚待深入探究的几个问题 [J]. 化学进展, 2009, 21(6): 1107??1117.
[26]  [9]YAO Yingwu, ZHAO Manman, ZHAO Chunmei, et al. Preparation and properties of PbO2??ZrO2 nanocomposite electrodes by pulse electrodeposition [J]. Electrochimica Acta, 2014, 117(7): 453??459.
[27]  [22]CHANG Limin, ZHOU Ying, DUAN Xiaoyue, et al. Preparation and characterization of carbon nanotube and Bi??doped PbO2 electrode [J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(4): 1338??1346.
[28]  [23]YAO Yingwu, ZHAO Manman, ZHAO Chunmei, et al. Preparation and characterization of PbO2 electrodes prepared by pulse electrodeposition with different pulse frequency [J]. Journal of The Electrochemical Society, 2013, 160(11): D553??D557.
[29]  [24]ZHOU Minghua, HE Jianjian. Degradation of cationic red X??GRL by electrochemical oxidation on modified PbO2 electrode [J]. Journal of Hazardous Materials, 2008, 153(1/2): 357??363.
[30]  [25]LIN Hui, NIU Junfeng, XU Jiale, et al. Electrochemical mineralization of sulfamethoxazole by Ti/SnO2??Sb/Ce??PbO2 anode: kinetics, reaction pathways, and energy cost evolution [J]. Electrochimica Acta, 2013, 97(5): 167??174.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133