全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

基于虚拟弹性体的快速动网格方法
An Efficient Dynamic Mesh Method Based on Pseudo Elastic Solid

DOI: 10.7652/xjtuxb201610020

Keywords: 流固耦合,弹性体方法,快速动网格方法
fluid structure interaction
,elastic solid method,efficient dynamic mesh method

Full-Text   Cite this paper   Add to My Lib

Abstract:

为减少流固耦合的计算时间,在现有弹性体方法的基础上,发展了一种快速动网格方法。首先根据弹性体方法的基本假设,将流场网格所包围的空间区域视为虚拟弹性体,然后将结构与该虚拟弹性体视为一个整体系统,并计算其固有振动的振型及频率,最后以结构受到的流体作用力为激励,通过振型叠加法计算结构网格及流场网格节点的位移。考虑到实际结构的流固耦合振动多为低阶模态的振动,在流固耦合计算中可以通过低阶模态的叠加计算流场网格节点的位移,从而达到快速更新流场网格的目的。采用该快速动网格算法,对某弹性梁颤振问题进行了流固耦合分析,计算结果与已有文献的结果吻合很好,说明了该算法的正确性。与现有的弹性体方法相比,该算法使流固耦合计算时间减少了65.5%。对Wing 445.6模型的颤振问题进行了分析,得到颤振边界与实验值吻合良好,且与现有弹性体法相比,可以减少计算时间54.8%。
To reduce the computing time of fluid structure coupling, an efficient dynamic mesh method based on the pre??existing elastic solid method is developed. The flow mesh domain is assumed to be a pseudo elastic solid according to the basic hypotheses of the elastic solid method, then the structure and the pseudo elastic solid are considered together as one holistic system. Subsequently the natural frequencies and vibration modes are calculated for the system and the flow force acted on the structure is considered as the excitation of the holistic system. The nodal displacements for the structure and the flow mesh are computed by mode superposition. In fact, the actual fluid structure coupled vibration for structures often appears associated with low order modes, the nodal displacements of the flow mesh can be calculated by modal superposition of the first few of low order modes, thus the flow mesh can be updated efficiently. A beam flutter problem is discussed with the present dynamic mesh method. The results coincide well with the data reported in the existing reference verifying the validation of the present method. The computing time is reduced by 65.5% compared with the pre??existing elastic solid method. The flutter of wing 445.6 is also analyzed and the calculated flutter boundary agrees with the experimental data, and the computing time is reduced by 54.8%

References

[1]  [10]HUO S H, WANG F S, YAN W Z, et al. Layered elastic solid method for the generation of unstructured dynamic mesh [J]. Finite Elements in Analysis and Design, 2010, 46(10): 949??955.
[2]  [11]ZIENKIEWICZ O C, PAUL D K, HINTON E. Cavitation in fluid??structure response with particular reference to dams under earthquake loading [J]. Earthquake Engineering & Structural Dynamics, 1983, 11(4): 463??481.
[3]  [12]MARSHALL J G, IMREGUN M. A review of aeroelasticity methods with emphasis on turbomachinery applications [J]. Journal of Fluids and Structures, 1996, 10(3): 237??267.
[4]  [13]TUREK S, HRON J. Proposal for numerical benchmarking of fluid??structure interaction between an elastic object and laminar incompressible flow [M]. Berlin, Germany: Springer, 2006: 371??385.
[5]  [14]YATES E C, Jr. AGARD standard aeroelastic configurations for dynamic response I??wing 445??6 [R]. Neuilly Sur Seine, France: Advisory Group for Aerospace Research and Development Neuilly??Sur??Seine, 1988: 1??74.
[6]  [2]史爱明, 杨青, 杨永年. 非结构运动网格下的三维机翼颤振数值分析 [J]. 振动与冲击, 2006, 24(6): 27??28.
[7]  SHI Aiming, YANG Qing, YANG Yongnian. Numerical flutter analysis of a 3??D wing using unstructured dynamic mesh Euler method [J]. Journal of Vibration and Shock, 2006, 24(6): 27??28.
[8]  [3]TEZDUYAR T E. Stabilized finite element formulations for incompressible flow computations [J]. Advances in Applied Mechanics, 1991, 28: 1??44.
[9]  XIE Liang, XU Min, ZHANG Bin, et al. Space points reduction in grid deforming method based on radial basis functions [J]. Journal of Vibration and Shock, 2013, 32(10): 141??145.
[10]  [6]TEZDUYAR T E, BEHR M, MITTAL S, et al. A new strategy for finite element computations involving moving boundaries and interfaces??the deforming??spatial??domain/space??time procedure: IThe concept and the preliminary tests [J]. Computer Methods in Applied Mechanics and Engineering, 1992, 94(3): 339??351.
[11]  [7]TEZDUYAR T E, BEHR M, MITTAL S, et al. A new strategy for finite element computations involving moving boundaries and interfaces??the deforming??spatial??domain/space??time procedure: IIComputation of free??surface flows, two??liquid flows, and flows with drifting cylinders [J]. Computer Methods in Applied Mechanics and Engineering, 1992, 94(3): 353??371.
[12]  [8]BAR??YOSEPH P Z, MEREU S, CHIPPADA S, et al. Automatic monitoring of element shape quality in 2??D and 3??D computational mesh dynamics [J]. Computational Mechanics, 2001, 27(5): 378??395.
[13]  [9]STEIN K, TEZDUYAR T, BENNEY R. Mesh moving techniques for fluid??structure interactions with large displacements [J]. Journal of Applied Mechanics, 2003, 70(1): 58??63.
[14]  [1]张伟伟, 高传强, 叶正寅. 气动弹性计算中网格变形方法研究进展 [J]. 航空学报, 2014, 35(2): 303??319.
[15]  ZHANG Weiwei, GAO Chuanqiang, YE Zhengyin. Progress on mesh deformation in computational aeroelasticity [J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 303??319.
[16]  [4]陈炎, 曹树良, 梁开洪, 等. 基于温度体模型的动网格生成方法及在流固耦合振动中的应用 [J]. 振动与冲击, 2010, 29(4): 1??5.
[17]  CHEN Yan, CAO Shuliang, LIANG Kaihong, et al. A new dynamic grids based on temperature analogy and its application in vibration engineering with fluid??solid interaction [J]. Journal of Vibration and Shock, 2010, 29(4): 1??5.
[18]  [5]谢亮, 徐敏, 张斌, 等. 基于径向基函数的高效网格变形算法研究 [J]. 振动与冲击, 2013, 32(10): 141??145.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133