|
- 2015
邻域线性最小二乘拟合的推荐支持度模型
|
Abstract:
针对协同过滤推荐系统在稀疏数据集条件下推荐准确度低的问题,提出了推荐支持度模型以及用于该模型计算的邻域线性最小二乘拟合的推荐支持度评分算法(linear least squares fitting, LLSF)。该模型描述用户对被推荐项目更感兴趣的可能性,通过用高支持度的评分估计取代传统的期望估计法来找出用户更喜欢的项目,从而提高推荐的准确度,并从理论上论述了该算法在稀疏数据集条件下相对其他算法具有更强的抗干扰能力。该模型还易于与其他推荐模型融合,具有很好的可拓展性。实验结果表明:LLSF算法显著提升了推荐的准确性,在MovieLens数据集上,F1分数可达到传统的kNN算法的3倍多,对于越是稀疏的数据集,准确率提升幅度越大,在Book??Crossing数据集上,当稀疏度由91%增加到99%时,F1分数的改进由22%提高到125%。同时该方法不会牺牲推荐覆盖率,可以保证长尾项目的挖掘效果。
A recommendation??support model and a neighborhood??based linear least squares fitting (LLSF) algorithm for the calculation of recommendation??support rating are proposed to solve the low accuracy problem of collaborative filtering based recommender systems on sparse data sets. The model focuses on the probability of users’ more interests on the recommended items, and uses the estimation with high recommendation??support rating to replace the traditional expecta??tion estimation so that users’preferred items are found and the accuracy of recommendation is improved. A theoretical analysis shows that the anti??interference ability of the LLSF algorithm is better than those of other algorithms under the condition of sparse data sets. The model is also expansible by integrating other models. Experimental results show that the LLSF algorithm improves the recommendation accuracy remarkably. The F1 score is 3 times of that of the traditional kNN algorithm on the MovieLens data set. The more sparse the data set is, the more the improvement on accuracy obtains. When the sparsity grows from 91% to 99% on the Book??crossing data set, the improvement on F1 scores increases from 22% to 125%. Moreover, the algorithm can guarantee the ability of long tail mining without loss of recommendation coverage
[1] | HUANG Chuangguang, YIN Jian, WANG Jing, et al. Uncertain neighbors’ collaborative filtering recommendation algorithm [J]. Chinese Journal of Computers, 2010, 33(8): 1369??1377. |
[2] | [7]罗辛, 欧阳元新, 熊璋, 等. 通过相似度支持度优化基于K近邻的协同过滤算法 [J]. 计算机学报, 2010, 33(8): 1437??1445. |
[3] | LUO Xin, OUYANG Yuanxin, XIONG Zhang, et al. The effect of similarity support in K??nearest??neighborhood based collaborative filtering [J]. Chinese Journal of Computers, 2010, 33(8): 1437??1445. |
[4] | [9]吕红亮, 王劲林, 邓峰, 等. 多指标推荐的全局邻域模型 [J]. 西安交通大学学报, 2012, 46(11): 98??105. |
[5] | [11]DESHPANDE M, KARYPIS G. Item??based top??N recommendation algorithms [J]. ACM Transactions on Information Systems, 2004, 22(1): 143??177. |
[6] | [1]项亮. 推荐系统实践 [M]. 北京: 人民邮电出版社, 2012: 1??34. |
[7] | [2]ADOMAVICIUS G, TUZHILIN A. Toward the next generation of recommender systems: a survey of the state??of??the??art and possible extensions [J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734??749. |
[8] | [3]LINDEN G, SMITH B, YORK J. Amazon. com recommendations: item??to??item collaborative filtering [J]. IEEE Internet Computing, 2003, 7(1): 76??80. |
[9] | [5]SARWAR B, KARYPIS G, KONSTAN J, et al. Item??based collaborative filtering recommendation algorithms [C]∥Proceedings of the 10th International Conference on World Wide Web. New York, USA: ACM, 2001: 285??295. |
[10] | [6]黄创光, 印鉴, 汪静, 等. 不确定近邻的协同过滤推荐算法 [J]. 计算机学报, 2010, 33(8): 1369??1377. |
[11] | L?a Hongliang, WANG Jinlin, DENG Feng, et al. A global neighborhood??based model with multi??criteria recommendation [J]. Journal of Xi’an Jiaotong University, 2012, 46(11): 98??105. |
[12] | [8]ADAMOPOULOS P, TUZHILIN A. Recommendation opportunities: improving item prediction using weighted percentile methods in collaborative filtering systems [C]∥Proceedings of the 7th ACM Conference on Recommender Systems. New York, USA: ACM, 2013: 351??354. |
[13] | [10]KOREN Y. Factor in the neighbors: scalable and accurate collaborative filtering [J]. ACM Transactions on Knowledge Discovery from Data, 2010, 4(1): 1??24. |
[14] | [12]ADAMOPOULOS P. On discovering non??obvious recommendations: using unexpectedness and neighborhood selection methods in collaborative filtering systems [C]∥Proceedings of the 7th ACM International Conference on Web Search and Data Mining. New York, USA: ACM, 2014: 655??660. |
[15] | [13]GROUPLENS. MovieLens datasets [DB/OL]. (2011??03??01)[2014??06??20]. http:∥www.grouplens.org/datasets/movielens/. |
[16] | [14]ZIEGLER C N, FREIBURG D. Book??crossing datasets [DB/OL]. (2004??06??01)[2014??06??20]. http:∥www2.informatik.uni??freiburg.de/~cziegler/BX/. |
[17] | [4]SU Xiaoyuan, KHOSHGOFTAAR T M. A survey of collaborative filtering techniques [J]. Advances in Artificial Intelligence, 2009, 2009: 421425. |