全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

采用稀疏SIFT特征的车型识别方法
A Vehicle Classification Technique Based on Sparse Coding

DOI: 10.7652/xjtuxb201512022

Keywords: 深度学习,车型识别,稀疏特征,尺度不变转换特征,线性支持向量机分类
deep learning
,vehicle recognition,sparse feature,scale invariant feature transform,linear support vector machine classification

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对实际应用中因图像清晰度低等因素导致的车型识别误差过大的问题,提出了一种基于稀疏尺度不变转换特征(sparse scale invariant feature transform,S??SIFT)的车型识别方法。该方法用背景建模方法检测交通视频运动目标,提取目标SIFT特征;通过L1约束计算出SIFT特征的稀疏编码,并用最大池化方法降低稀疏编码维度,在线性SVM分类器中完成车型分类,弥补了背景建模方法识别误差过大、不具备车型分类功能的缺陷。经G36高速公路实际应用表明:算法对车辆场景识别率可达98%以上,车型识别准确率可达89%以上,对低清晰度、不同视角、雨雪、遮挡等场景有很好的鲁棒性;图像平均处理时间不超过40 ms,可满足系统对实时性的要求,在准确率和时间效率两方面均明显优于传统的SIFT方法和HOG方法。
A new method based on sparse scale invariant feature transform(S??SIFT) is proposed to improve the vehicle recognition rate in environment such as low image quality. Moving objects are detected using a Gaussian mixture background subtraction model and SIFT features of the objects are calculated. Then, the sparse coding of SIFT features is obtained through L1 constraint. A max pooling strategy is introduced to reduce the dimension of the sparse coding. Finally, a linear support vector machine (SVM) is used to classify and to recognize the objects. The method solves the problems that the background modeling has a larger error rate and lacks function of vehicle classification. An application of the technique on G36 highway shows that the algorithm has an excellent result on different scenes such as low resolution, different camera angles, sleet and shade. The experimental results provide a more than 98% scene recognition rate, and a more than 89% classification accuracy rate. Moreover, the average time to process images is less than forty milliseconds, and it meets the real??time requirement. It is concluded that the proposed method is better than the SIFT and the HOG methods on both accuracy and time efficiency

References

[1]  [8]程东阳, 蒋兴浩, 孙锬锋. 基于稀疏编码和多核学习的图像分类算法 [J]. 上海交通大学学报, 2012, 46(11): 1789??1793.
[2]  [11]SERRE T, WOLF L, POGGIO T. Object recognition with features inspired by visual cortex [C]∥Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2005: 994??1000.
[3]  [1]ZHANG Zhaoxiang, TAN Tieniu, HUANG Kaiqi, et al. Three??dimensional deformable??model??based localization and recognition of road vehicles [J]. IEEE Transactions on Image Processing, 2012, 21(1): 1??13.
[4]  [2]崔莹莹. 智能交通中的车型识别研究 [D]. 成都: 电子科技大学, 2013.
[5]  [3]WOOD R J, REED D, LEPANTO J, et al. Robust background modeling for enhancing object tracking in video [J]. Proceedings of the SPIE, 2014, 9089(2): 1??9.
[6]  [4]黄毅, 陈湘军, 阮雅端, 等. 低清晰视频的“白化?蚕∈杼卣鳌背敌头掷嗨惴? [J]. 南京大学学报: 自然科学版, 2015, 51(2): 257??263.
[7]  HUANG Yi, CHEN Xiangjun, RUAN Yaduan, et al. The whitening??sparse coding vehicle classification algorithm for low resolution video [J]. Journal of Nanjing University: Science Edition, 2015, 51(2): 257??263.
[8]  [6]DONG Weisheng, LI Xin, ZHANG Lei, et al. Sparsity??based image denoising via dictionary learning and structural clustering [C]∥Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2011: 457??464.
[9]  [12]BOUREAU Y L, BACH F, LECUN Y, et al. Learning mid??level features for recognition [C]∥Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2010: 2559??2566.
[10]  [5]DALAL N, TRIGGS B. Histograms of oriented gradients for human detection [C]∥Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2005: 886??893.
[11]  [7]MAIRAL J, BACH F, PONCE J, et al. Discriminative learned dictionaries for local image analysis [C]∥Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2008: 1??8.
[12]  CHENG Dongyang, JIANG Xinghao, SUN Tanfeng. Image classification using multiple kernel learning and sparse coding [J]. Journal of Shanghai Jiaotong University, 2012, 46(11): 1789??1793.
[13]  [9]YANG Jianchao, YU Kai, GONG Yihong, et al. Linear spatial pyramid matching using sparse coding for image classification [C]∥Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2009: 1794??1801.
[14]  [10]LEE H, BATTLE A, RAINA R, et al. Efficient sparse coding algorithms [J]. Advances in Neural Information Processing Systems, 2006, 19(1): 801??808.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133