全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

叶片前缘旋流蒸汽冷却流动和传热的数值研究
Numerical Study on Characteristics of Flow and Heat Transfer of Steam Vortex Cooling for Blade Leading Edges

DOI: 10.7652/xjtuxb201510012

Keywords: 旋流蒸汽冷却,流动换热,阻力系数,传热关联式,数值模拟
steam vortex cooling
,flow and heat transfer,friction factor,heat transfer correlation,numerical simulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过求解三维Reynolds??Averaged Navier??Stokes方程和标准k?拨赝牧髂P?,数值研究了旋流蒸汽冷却的基本原理,分析了冷气雷诺数和来流温比对流动和传热特性的影响,旨在阐明旋流蒸汽冷却的原理,总结其流动传热的变化规律。在此基础上对无量纲换热系数Nu、雷诺数Re和来流温比φ进行数值拟合,得到旋流蒸汽冷却的传热关联式。研究表明:冷气在旋流腔内的高速转动引起强烈的径向对流运动,使得换热增强;增大雷诺数能够增大冷气的涡量,有效提高旋流腔的换热系数,同时降低阻力系数;增大来流温比使得冷气的涡量增大密度减小,旋流腔的换热系数略有减小,阻力系数显著降低;综合换热因子随着雷诺数的增大而增大,随着来流温比的增大而减小;拟合的传热关联式与数值计算结果吻合良好,可以准确地预测蒸汽旋流冷却的换热系数。
The fundamental principle of steam vortex cooling is numerically investigated by means of 3??D Reynolds??averaged Navier??Stokes equations coupled with the standard k?拨? turbulent model. Effects of Reynolds number and inlet to wall temperature ratio on the flow and heat transfer characteristics are analyzed to clarify the mechanism of steam vortex cooling and to summarize properties of the flow and heat transfer. The heat transfer correlation of steam vortex cooling is obtained based on numerical data. The results show that violent convective motion is caused by the high speed rotational flow of steam in the vortex chamber, and results in an enhanced heat transfer performance. When the Reynolds number is increased, the heat transfer coefficient increases while the friction factor significantly decreases because of an increase in steam vorticity. An increase in inlet to wall temperature ratio results in a slight decrease in heat transfer coefficient, an increase in steam vorticity a decrease in density, and a clear decrease in friction factor of vortex chamber. The thermal performance factor increases as the Reynolds number is increased, and decreases as the temperature ratio is increased. The heat transfer correlation can be applied to predict the heat transfer coefficient of steam vortex cooling

References

[1]  [1]LIAO Gaoliang, WANG Xinjun, LI Jun, et al. A numerical comparison of thermal performance of in??line pin??fins in a wedge duct with three kinds of coolant [J]. International Journal of Heat and Mass Transfer, 2014, 77: 1033??1042.
[2]  [5]LING J P C W, IRELAND P T, HARVEY N W. Measurement of heat transfer coefficient distributions and flow field in a model of a turbine blade cooling passage with tangential injection [C]∥Proceedings of the ASME 2006 Turbine Technical Conference on Power for Land, Sea, and Air. New York, USA: ASME, 2006: 325??340.
[3]  [9]徐虹艳, 张靖周, 谭晓茗. 涡轮叶片尾缘内冷通道旋流冷却特性 [J]. 航空动力学报, 2014, 29(1): 59??66.
[4]  [6]PIRALISHVILI S A, VERETENNIKOV S V, KHASANOV S M, et al. Development of a cyclone??vortex nozzle vane and design efficiency of its convective??film cooling by steam [J]. Thermal Engineering, 2010, 57(5): 433??440.
[5]  [7]刘高文, 薛彪, 彭力, 等. 叶片前缘旋流和常规冲击对比数值研究 [J]. 推进技术, 2011, 32(4): 576??580.
[6]  LIU Gaowen, XUE Biao, PENG Li, et al. Numerical investigation of difference between blade leading edge vortex and normal impingement cooling [J]. Journal of Propulsion Technology, 2011, 32(4): 576??580.
[7]  [8]LIU Zhao, LI Jun, FENG Zhenping. Numerical study on the effect of jet slot height on flow and heat transfer of swirl cooling in leading edge model for gas turbine blade [C]∥Proceedings of the ASME 2013 Turbine Technical Conference and Exposition on Power for Land, Sea, and Air. New York, USA: ASME, 2013: V03AT12A029.
[8]  XU Hongyan, ZHANG Jingzhou, TAN Xiaoming. Vortex cooling performance in internal cooling channel of turbine blade trailing edge [J]. Journal of Aerospace Power, 2014, 29(1): 59??66.
[9]  [10]XU Liang, WANG Wei, GAO Tieyu, et al. Experimental study on cooling performance of a steam??cooled turbine blade with five internal cooling smooth channels [J]. Experimental Thermal and Fluid Science, 2014, 58: 180??187.
[10]  [11]SHUI Linqi, GAO Jianmin, XU Liang, et al. Numerical investigation of heat transfer and flow characteristics in a steam??cooled square ribbed duct [C]∥Proceeding of the 2010 ASME Turbine Technical Conference and Exposition on Power for Land, Sea, and Air. New York, USA: ASME, 2010: 163??171.
[11]  [2]HAY N, WEST P D. Heat transfer in free swirling flow in a pipe [J]. Journal of Heat Transfer, 1975, 97(3): 411??416.
[12]  [3]GLEZER B, MOON H K, O’CONNELL T. A novel technique for the internal blade cooling [C]∥Proceedings of the ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. New York, USA: ASME, 2013: V004T09A015.
[13]  [4]HEDLUND C R, LIGRANI P M, GLEZER B, et al. Heat transfer in a swirl chamber at different temperature ratios and Reynolds numbers [J]. International Journal of Heat and Mass Transfer, 1999, 42(22): 4081??4091.
[14]  [13]WANG Ting, GADDIS J L, LI Xianchang. Mist/steam heat transfer of multiple rows of impinging jets [J]. International Journal of Heat and Mass Transfer, 2005, 48(25/26): 5179??5191.
[15]  [12]LIAO Gaoliang, WANG Xinjun, LI Jun, et al. A numerical comparison of thermal performance of in??line pin??fins in a wedge duct with three kinds of coolant [J]International Journal of Heat and Mass Transfer, 2014, 77: 1033??1042.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133