全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

混合因子矩阵分解推荐算法
A Matrix Factorization Algorithm with Hybrid Implicit and Explicit Attributes for Recommender Systems

DOI: 10.7652/xjtuxb201612014

Keywords: 推荐算法,矩阵分解,混合因子,推荐解释,冷启动
recommender algorithm
,matrix factorization,hybrid factor,recommended interpretation,cold start

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对矩阵分解推荐算法在潜在属性与已知属性之间不能建立对应关系的问题,提出了一种混合显式属性与隐式属性的矩阵分解算法。该算法使用显式属性的相关性对因子矩阵进行约束,能够抑制稀疏数据矩阵分解中过拟合的问题,提高推荐精度,由于因子矩阵中包含显式属性,所以混合因子矩阵分解算法可以实现对新用户和新产品推荐,部分地解决了冷启动问题,实现了从评分数据到显式属性的映射,并对推荐结果给出一定的解释。在MovieLens数据集上的实验结果表明:相同因子数下,混合因子矩阵分解算法的推荐精度均优于偏置概率矩阵分解算法,并能够基于显式属性实现对新产品的推荐。
A novel hybrid matrix factorization algorithm (HMF) is proposed to solve the problem that the correlation between latent factors and explicit attributes can not be established in traditional matrix factorization methods. The algorithm combines implicit and explicit attributes and uses correlations among explicit attributes to constrain factor matrixes, and to relieve the over fitting in sparse data matrix decomposition. Since factor matrixes include explicit attributes, HMF is used to solve the problem of cold start and to recommend new items. HMF realizes mapping from rating matrix to weights of explicit attributes and offers an interpretation for recommender items. Experiment on MovieLens datasets shows that the accuracy of HMF is superior to that of BPMF for same number of factors, and HMF can be used to recommend new items based on explicit attributes

References

[1]  [2]MA W, FENG X, WANG S, et al. Personalized recommendation based on heat bidirectional transfer [J]. Physica: AStatistical Mechanics and Its Applications, 2016, 444: 713??721.
[2]  [3]RICCI F, ROKACH L, SHAPIRA B. Recommender systems handbook [M]. 3rd ed. Berlin, Germany: Springer, 2010: 1??35.
[3]  [5]SALAKHUTDINOV R, MNIH A. Bayesian probabilistic matrix factorization using Markov chain Monte Carlo [C]∥Proceedings of the International Conference on Machine Learning. New York, USA: ACM, 2008: 880??887.
[4]  [6]RENDLE S, SCHMIDT??THIEME L. Online??updating regularized kernel matrix factorization models for large??scale recommender systems [C]∥Proceedings of the 2008 ACM Conference on Recommender Systems. New York, USA: ACM, 2008: 251??258.
[5]  [7]秦继伟, 郑庆华, 郑德立, 等. 结合评分和信任的协同推荐算法 [J]. 西安交通大学学报, 2013, 47(4): 100??104.
[6]  [8]郭磊, 马军, 陈竹敏, 等. 一种结合推荐对象间关联关系的社会化推荐算法 [J]. 计算机学报, 2014, 37(1): 219??228.
[7]  GUO Lei, MA Jun, CHEN Zhumin, et al. Incorporating item relations for social recommendation [J]. Chinese Journal of Computer, 2014, 37(1): 219??228.
[8]  QIN Jiwei, ZHENG Qinghua, ZHENG Deli, et al. A collaborative recommendation algorithm based on ratings and trust [J]. Journal of Xi’an Jiaotong University, 2013, 47(4): 100??104.
[9]  [11]LEE D D, SEUNG H S. Learning the parts of objects by non??negative matrix factorization [J]. Nature, 1999, 401(6755): 788??791.
[10]  [1]KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems [J]. Computer, 2009, 42(8): 30??37.
[11]  [4]SALAKHUTDINOV R, MNIH A. Probabilistic matrix factorization [C]∥Proceedings of the 2015 Advances in Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 2015: 1257??1264.
[12]  [9]MA H, KING I, LYU M R. Learning to recommend with explicit and implicit social relations [J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 135??136.
[13]  [10]MA H, KING I, LYU M R, et al. SoRec: social recommendation using probabilistic matrix factorization [C]∥Proceedings of the 2008 ACM Conference on Information and Knowledge Management. New York, USA: ACM, 2008: 931??940.
[14]  [12]ORTEGA F, HERNANDO A, BOBADILLA J, et al. Recommending items to group of users using matrix factorization based collaborative filtering [J]. Information Sciences, 2016, 345: 313??324.
[15]  [13]ZHAO L, PAN S J, XIANG E W, et al. Active transfer learning for cross??system recommendation [C]∥Proceedings of the 27th AAAI Conference on Artificial Intelligence. Palo Alto, CA, USA: AAAI Press, 2013: 1205??1211.
[16]  [14]JIANG M, CUI P, WANG F, et al. Social recommendation across multiple relational domains [C]∥Proceedings of the ACM International Conference on Information and Knowledge Management. New York, USA: ACM, 2012: 1422??1431.
[17]  [15]HARPER F M, KONSTAN J A. The movielens datasets: history and context [J]. ACM Transactions on Interactive Intelligent Systems, 2015, 5(4): 1068??1074.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133