|
- 2016
电化学充氢下2.25Cr1Mo0.25V钢氢脆敏感性研究
|
Abstract:
针对制造加氢反应器的主要材料2.25Cr1Mo0.25V钢易发生氢脆的问题,重点研究了材料氢脆发生机制,以了解该材料的氢脆敏感性。利用电化学氢渗透测试技术,通过施加阴极恒电流,使氢原子渗透进入钢中,揭示了不同环境中的氢扩散特性,同时通过结合氢渗透技术和慢速率拉伸试验方法研究了钢材的氢脆敏感性。渗氢试验结果表明:随着电化学充氢电流密度的增大以及试样厚度的减小,氢扩散系数均逐渐增大;充氢温度的倒数1/T和氢扩散系数的自然对数之间存在线性关系。慢速率拉伸试验的结果表明:随着充氢电流密度的增大,钢的断裂强度、延伸率和断面收缩减小而氢脆指数增大。当充氢电流密度超过2.5×10-3 A/cm2时,钢材表现出明显的氢脆。该试验结果可为加氢反应器材料性能评价提供理论依据。
The alloy steel 2??25Cr1Mo0??25V is mainly used to make hydrogenation reactors, which is easily subject to failure of hydrogen embrittlement. This paper aims to study the mechanism of hydrogen embrittlement and understand the hydrogen embrittlement sensitivity of the material. With the electrochemical hydrogen permeability technique and applying constant cathode current to let the hydrogen permeate into the steel, the characteristics of hydrogen diffusion under different test conditions were revealed. Meanwhile, the hydrogen embrittlement sensitivity was investigated by combining the hydrogen permeability technique with the slow??rate tensile test. The test results showed that the hydrogen diffusion coefficients were increased with the growth of the electrochemical hydrogen charging current density as well as the reduction of sample thickness. There is a linear relationship between the reciprocal of charging temperature (1/T) and the natural logarithm of hydrogen diffusion coefficient. Results of slow??rate tensile tests showed that with the growth of the charging current density, the fracture strength, the elongation rate and the area reduction of the steel decreased, while the hydrogen embrittlement indexes increased. When the hydrogen charging current density exceeds 2.5×10-3 A/cm2, the steel showed obvious hydrogen embrittlement. The test results will help the performance evaluation of materials used to make hydrogenation reactors
[1] | [4]RAY A K, TIWARI Y N, ROY P K, et al. Creep rupture analysis and remaining life assessment of 2??25Cr1Mo steel tubes from a thermal power plant [J]. Materials Science and Engineering: A, 2007, 454: 679??684. |
[2] | [5]MORO L, GONZALEZ G, BRIZUERLA G, et al. Influence of chromium and vanadium in the mechanical resistance of steels [J]. Materials Chemistry and Physics, 2008, 109(2): 212??216. |
[3] | [6]PEREIRAE P A S, FRANCO C S G, GUERRAFILHO J L M, et al. Hydrogen effects on the microstructure of a 2??25Cr??1Mo??0??25V steel welded joint [J]. International Journal of Hydrogen Energy, 2015, 40(47): 17136??17143. |
[4] | [7]MA X, HU C, QIN H, et al. Effect of heat treatment process on critical transformation temperature of 2??25Cr1Mo0??25V steel [J]. Journal of Petro??Chemical Universities, 2011, 3: 019. |
[5] | [8]刘长海, 邓文彬, 高军, 等. 2??25Cr??1Mo??0??25V钢的硫化氢应力腐蚀试验研究 [J]. 压力容器, 2014, 31(2): 9??13. |
[6] | LIU Changhai, DENG Wenbin, GAO Jun, et al. Experimental investigation of 2??25Cr1Mo0??25V steel’s hydrogen sulfide stress corrosion [J]. Pressure Vessel Technology, 2014, 31(2): 9??13. |
[7] | WANG Yanbin, WANG Sheng. The role of plastic deformation on hydrogen induced fracture [J]. Journal of Chinese Society for Corrosion and Protection, 2000, 20(4): 248??252. |
[8] | [2]陈晓玲, 李多民, 段滋华. 加氢反应器的发展现状 [J]. 化工装备技术, 2009, 30(1): 28??31. |
[9] | CHEN Xiaoling, LI Duomin, DUAN Zihua. Hydroge??nation reactor development status [J]. Chemical Equipment Technology, 2009, 30(1): 28??31. |
[10] | [9]JEBARAJ J J M, MORRISON D J, SUNI I I. Hydrogen diffusion coefficients through Inconel 718 in different metallurgical conditions [J]. Corrosion Science, 2014, 80: 517??522. |
[11] | [16]MAIER H J, POPP W, KAESCHE H. Effects of hydrogen on ductile fracture of a spheroidized low alloy steel [J]. Materials Science and Engineering: A, 1995, 191(1): 17??26. |
[12] | [17]BRIOTTET L, MORO I, LEMOINE P. Quantifying the hydrogen embrittlement of pipeline steels for safety considerations [J]. International Journal of Hydrogen Energy, 2012, 37(22): 17616??17623. |
[13] | HUA Li, ZHU Kuilong, WANG Zhiwen, et al. An investigation of resistance to hydrogen embrittlement of 2??25Cr??1Mo steel [J]. Journal of East China University of Science and Technology (Natural Science), 2003, 29(6): 621??624. |
[14] | [10]ZHOU C, ZHENG S, CHEN C, et al. The effect of the partial pressure of H2S on the permeation of hydrogen in low carbon pipeline steel [J]. Corrosion Science, 2013, 67: 184??192. |
[15] | [11]CARNEIRO R A, RATNAPULI R C, DE FREITAS C L V. The influence of chemical composition and microstructure of API linepipe steels on hydrogen induced cracking and sulfide stress corrosion cracking [J]. Materials Science and Engineering: A, 2003, 357(1): 104??110. |
[16] | [12]DONG C F, LIU Z Y, LI X G, et al. Effects of hydrogen charging on the susceptibility of X100 pipeline steel to hydrogen??induced cracking [J]. International Journal of Hydrogen Energy, 2009, 34(24): 9879??9884. |
[17] | [13]中国国家标准化管理委员会. 金属材料拉伸试验: 第1部分室温试验方法: GB/T 228??1―2010[S]. 北京: 中国标准出版社, 2012. |
[18] | [14]RIVERA P C, RAMUNNI V P, BRUZZONI P. Hydrogen trapping in an API 5L X60 steel [J]. Corrosion Science, 2012, 54: 106??118. |
[19] | [15]ADDACH H, BERCOT P, REZRAZI M, et al. Hydrogen permeation in iron at different temperatures [J]. Materials Letters, 2005, 59(11): 1347??1351. |
[20] | [18]王燕斌, 王胜. 塑性变形在氢致断裂中的作用 [J]. 中国腐蚀与防护学报, 2000, 20(4): 248??252. |
[21] | [1]李永红. 工业用钢2??25Cr??1Mo与2??25 Cr??1Mo??0??25V的性能对比分析 [J]. 机械研究与应用, 2006, 19(4): 44??45. |
[22] | LI Yonghong. Research about 2??25Cr??1Mo steel and 2??25Cr??1M o??0??25V steel [J]. Mechanical Research and Application, 2006, 19(4): 44??45. |
[23] | [3]华丽, 朱奎龙, 王志文, 等. 2??25Cr??1Mo钢抗氢脆性能的研究 [J]. 华东理工大学学报(自然科学版), 2003, 29(6): 621??624. |