全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

变步长等变自适应盲源分离算法
Variable Step??Size Algorithm for Equivariant Adaptive Separation via Independence

DOI: 10.7652/xjtuxb201512014

Keywords: 盲源分离,等变自适应盲源分离,分离指标,变步长,在线算法
blind source separation
,equivariant adaptive separation via independence,separation indicator,variable step size,online algorithm

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对传统盲源分离(BSS)算法采用固定步长难以同时兼顾收敛速度和稳态误差的难题,采用等变自适应盲源分离(EASI)算法,提出了一种基于分离指标的变步长等变自适应盲源分离算法(VS-SI)。该算法利用EASI收敛条件,构造表征信号分离程度的分离指标,并设计带遗忘因子的更新算法,以减小历史数据误差的影响,实现分离指标的自适应计算,并采用一个非线性单调递增函数实现步长的自适应调节。通过与固定步长的自然梯度算法(FS-NG)、固定步长的EASI算法(FS-EASI)、步长指数衰减算法(EDS)和基于权重正交约束变步长算法(AS-WO)的性能进行对比,结果表明,在无噪声和有噪声两种情况下,提出算法均有较快的收敛速度,最终性能指标分别减小了15%和20%以上,同时兼顾稳态误差和收敛速度,具有较好的数值鲁棒性。
The traditional blind source separation algorithm can not well balance the convergence rate and the steady??state error due to the limitation of fixed step size. Based on equivariant adaptive separation via independence (EASI) algorithm, a variable step??size algorithm with separation indicator (VS-SI) for EASI is proposed. The separation indicator (S) is constructed to reveal the separation degree by analyzing the convergence condition of EASI. Then, the adaptive updating of the S with forgetting factor is also designed to reduce the error effects of the previous data. A nonlinear monotone increasing function is proposed, which adaptively updates the step size. Compared with the fixed step??size natural gradient algorithm (FS-NG), the fixed step??size EASI algorithm, the exponential decay step??size algorithm and the adaptive step??size algorithm with weighted orthogonalization, the proposed algorithm is endowed with faster convergence rate, and the final performance indicator decreases more than 15% and 20% under noise??free and noisy conditions respectively. The proposed method can balance the convergence rate and the steady??state error with strong robustness

References

[1]  [11]JAFARI M G, CHAMBERS J A, MANDIC D P. A novel adaptive learning rate sequential blind source separation algorithm [J]. Signal Processing, 2004, 84(4): 801??804.
[2]  [12]YANG H H. Serial updating rule for blind separation derived from the method of scoring [J]. IEEE Transactions on Signal Processing, 1999, 47(8): 2279??2285.
[3]  [13]TANG X J, ZHANG X F, YE J M. Adaptive step??size natural gradient ICA algorithm with weighted orthogonalization [J]. Circuits Systems and Signal Processing, 2014, 33(1): 211??221.
[4]  [14]YE J M, JIN H H, LOU S T, et al. An optimized EASI algorithm [J]. Signal Processing, 2009, 89(3): 333??338.
[5]  [3]CHENG W, HE Z J, ZHANG Z S. A comprehensive study of vibration signals for a thin shell structure using enhanced independent component analysis and experimental validation [J]. Journal of Vibration and Acoustics, 2014, 136(4): 041011.
[6]  CHENG Wei, ZHANG Zhoushuo, HE Zhengjia, et al. Quantitative calculation of vibration source contributions of submarines based on independent component analysis [J]. Journal of Mechanical Engineering, 2010, 46(7): 82??95.
[7]  [7]成玮, 张周锁, 何正嘉. 降噪源分离技术及其在机械设备运行信息特征提取中的应用 [J]. 机械工程学报, 2010, 46(13): 128??134.
[8]  CHENG Wei, ZHANG Zhoushuo, HE Zhengjia. Denoising source separation technique and its application in feature extraction of mechanical equipment running information [J]. Journal of Mechanical Engineering, 2010, 46(13): 128??134.
[9]  [8]高颖, 李月, 杨宝俊. 变步长自适应盲源分离算法综述 [J]. 计算机工程与应用, 2007, 43(19): 75??79.
[10]  GAO Ying, LI Yue, YANG Baojun. Overview on variable step size techniques for on??line blind source separation [J]. Computer Engineering and Application, 2007, 43(19): 75??79.
[11]  [9]ZHANG X D, ZHU X L, BAO Z. Grading learning for blind source separation [J]. Science in China: Series F, 2003, 46(1): 31??44.
[12]  [10]NAKAJIMA H, NAKADAI K, HASEGAWAY, et al. Blind source separation with parameter??free adaptive step??size method for robot audition [J]. IEEE Transactions on Audio, Speech, and Language Processing, 2010, 18(6): 1476??1485.
[13]  [1]LATHAUWER L D, CASTAING J. Tensor??based techniques for the blind separation of DS??CDMA signals [J]. Signal Processing, 2007, 87(2): 322??336.
[14]  [2]FORESTA F L, MAMMONE N, MORABITO F C. PCA??ICA for automatic identification of critical events in continuous coma??EEG monitoring [J]. Biomedical Signal Processing and Control, 2009, 4(3): 229??235.
[15]  [4]MINH H Q, WISKOTT L. Multivariate slow feature analysis and decorrelation filtering for blind source separation [J]. IEEE Transactions on Image Processing, 2013, 22(7): 2737??2750.
[16]  [5]MAAZOUZI F, BAHI H. Type??2 fuzzy Gaussian mixture models for singing voice classification in commercial music production [J]. International Journal of Signal and Imaging Systems Engineering, 2013, 6(2): 111??118.
[17]  [6]成玮, 张周锁, 何正嘉, 等. 基于独立分量分析的潜艇振源贡献量定量计算方法 [J]. 机械工程学报, 2010, 46(7): 82??95.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133