全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

采用分组数据的序贯频谱感知方法
A Sequential Spectrum Sensing Method Using Grouped Data

DOI: 10.7652/xjtuxb201512006

Keywords: 认知无线电,频谱感知,序贯检测,超采样
cognitive radio
,spectrum sensing,sequential detection,super sample

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对传统的认知无线电频谱感知方法在低信噪比下感知时间长、系统吞吐量低的问题,提出了一种采用分组数据的混合型序贯检测(MSD)方法。该方法首先将次用户的感知数据进行分组形成超采样,然后由数学理论推导出最大化系统吞吐量的最优虚警概率,并且利用牛顿迭代法搜索最优虚警概率,最后在最优虚警概率下对超采样序列依次进行细检测和粗检测,快速获得检测结果。MSD方法采用分组数据进行频谱感知,能有效缩短感知时长,获得最大系统吞吐量,从而提高频谱利用率。蒙特卡罗仿真结果表明,在低信噪比下MSD方法比传统的序贯检测法和序贯能量检测法的平均归一化吞吐量增加了109%和21%,平均感知开销率减少了75%和49%。
A mixed sequential detection (MSD) method using grouped data is proposed to solve the problems of long sensing time and low system throughput of conventional spectrum sensing methods under low signal??noise ratio (SNR) condition. At first, the sensing data of the second user are processed in segments and grouped in super samples. Then, the optimal false alarm probability of the maximum system throughput is derived through mathematical theory analysis, and the Newton iterative algorithm is applied to search the optimal false alarm probability. Finally, the fine and rough detections on a sequence of super samples are successively taken under the optimal false alarm probability to quickly obtain the results of detection. The MSD performs spectrum sensing using grouped data, can effectively reduce the sensing time, and achieve the maximum throughput and improve the spectral efficiency. Monte Carlo simulation results under low SNR and comparisons with the sequential detection and the sequential energy detection show that the MSD gets 109%, 21% increase in average normalized throughput and 75%, 49% decrease in the ratio of average sensing overhead, respectively

References

[1]  WANG Bing, BAI Zhiquan, DONG Peihao, et al. A spectrum sensing scheme with weighted collaboration of dynamical clustering using space??time block code [J]. Journal of Xi’an Jiaotong University, 2014, 48(8): 23??28.
[2]  [1]MITOLA J. Cognitive radio: an integrated agent architecture for software defined radio [D]. Stockholm, Sweden: Royal Institute of Technology, 2000.
[3]  [2]高锐, 李赞, 司江勃, 等. 一种双重序贯检测的协作频谱感知方法 [J]. 西安交通大学学报, 2014, 48(4): 102??108.
[4]  [7]ZHANG Xiong, QIU Zhangding. A sequential energy detection based spectrum sensing scheme in cognitive radio [J]. Engineering and Technology, 2013, 5(3): 1002??1007.
[5]  [8]吴利平, 李赞. 基于信号分段处理的截尾型序贯检验算法 [J]. 电子学报, 2011, 39(10): 2412??2416.
[6]  [10]张雯, 杨家玮. 基于序贯检测的认知无线电系统的吞吐量 [J]. 计算机科学, 2011, 38(9): 76??78.
[7]  ZHANG Wen, YANG Jiawei. Throughput optimization of cognitive radio based on sequential detection [J]. Computer Science, 2011, 38(9): 76??78.
[8]  GAO Rui, LI Zan, SI Jiangbo, et al. Cooperative spectrum sensing method by dual sequential detection [J]. Journal of Xi’an Jiaotong University, 2014, 48(4): 102??108.
[9]  [11]时颖, 林茂六. 认知无线电中序贯能量检测器的性能分析 [J]. 哈尔滨工业大学学报, 2011, 32(10): 1355??1360.
[10]  SHI Ying, LIN Maoliu. Performance analysis of sequential energy detection in cognitive radios [J]. Journal of Harbin Engineering University, 2011, 32(10): 1355??1360.
[11]  [13]王兵, 白智全, 董培浩, 等. 采用空时分组编码的动态分组加权合作频谱感知方案 [J]. 西安交通大学学报, 2014, 48(8): 23??28.
[12]  [3]LOPEZ B M, CASADEVALL F. Improved energy detection spectrum sensing for cognitive radio [J]. IET Communications, 2012, 6(8): 785??796.
[13]  [4]WALD A. Sequential analysis [M]. New York, USA: John Wiley & Sons, 1947.
[14]  [5]CHUNG W H. Sequential likelihood ratio test under incomplete signal model for spectrum sensing [J]. IEEE Transactions on Wireless Communications, 2013, 12(2): 494??503.
[15]  [6]KUNDARGI N, TEWFIK A. A performance study of novel sequential energy detection methods for spectrum sensing [C]∥ Proceedings of the IEEE Acoustics Speech and Signal Processing. Piscataway, NJ, USA; IEEE, 2010: 3090??3093.
[16]  WU Liping, LI Zan. A truncated SPRT algorithm based on signal segmental processing [J]. Acta Electronica Sinica, 2011, 39(10): 2412??2416.
[17]  [9]LIU Q, WANG X. Scheduling of sequential periodic sensing for cognitive radios [J]. IEEE Journal on Selected Areas in Communications, 2014, 32(3): 503??515.
[18]  [12]BAI Zhiquan, WANG Li, ZHANG Haixia, et al. Cluster??based cooperative spectrum sensing for cognitive radio under bandwidth [C]∥ Proceedings of International Conference on Communication Systems. Piscataway, NJ, USA: IEEE, 2010: 569??573.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133