全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

最短特征线段多分类器系统设计
Design of Multiple Classifier Systems Based on Shortest Feature Line Segment

DOI: 10.7652/xjtuxb201509014

Keywords: 特征线段,隶属度,多分类器系统,证据理论
feature line segment
,membership function,multiple classifier systems,evidence theory

Full-Text   Cite this paper   Add to My Lib

Abstract:

为提高多分类器系统分类的性能,设计了一种使用最短特征线段分类器的多分类器系统。依据最短特征线段分类算法工作机理,利用特征线段长度表征样本隶属于各个类别的可能性,即模糊隶属度,对成员分类器输出形式完成由摘要级至度量级的重新建模,更多地保留输出细节以减少信息损失,进而利用基于模糊的证据融合规则实现成员分类器的度量级融合,通过隶属度到mass函数的转换,利用模糊?仓ぞ萑诤瞎嬖蚴迪侄喾掷嗥飨低车墓乖?,进一步提高了多分类器系统分类性能。采用人工数据集和UCI数据集设计了对比实验,实验表明,与其他邻域型分类器构造的多分类器系统相比,新多分类器系统能有效提升分类正确率。
To improve the classification performance of multiple classifier systems, a novel multiple classifier system using shortest feature line segment (SFLS) as member classifiers is proposed. According to the SFLS’s algorithmic principle on classification, the length of the shortest feature line segment is used to represent the probability, i.e., the fuzzy membership of the query sample belonging to the corresponding class. Thus, the member classifier’s output is transformed from the abstract level to the measurement level. Furthermore, by transforming the fuzzy membership function into the mass function and using fuzzy??based evidential fusion rules, the classification fusion is implemented. Compared with traditional multiple classifier systems, the proposed approach can use more detailed information for implementing more effective decision??level fusion. Experimental results show that the proposed multiple classifier systems can effectively improve classification accuracy

References

[1]  [1]李晶皎, 赵丽红, 王爱侠. 模式识别 [M]. 北京: 电子工业出版社, 2010.
[2]  [2]杨艺, 韩崇昭, 韩德强. 利用特征子空间评价与多分类器融合的高光谱图像分类 [J]. 西安交通大学学报, 2010, 44(8): 20??24.
[3]  ZHANG Chengjun, YIN Yan, BAO Jiusheng, et al. Research progress in fault diagnosis methods based on multi??source information fusion [J]. Journal of Hebei University of Science and Technology, 2014, 35(3): 213??221.
[4]  [5]张彩坡. 模糊积分及多分类器融合在医疗诊断中的应用 [D]. 天津: 天津理工大学, 2010.
[5]  [6]BREIMAN L. Bagging predictors [J]. Machine Learning, 1996, 24(2): 123??140.
[6]  [7]焦李成, 公茂果, 王爽, 等. 自然计算、机器学习与图像理解前沿 [M]. 西安: 西安电子科技大学出版社, 2008.
[7]  [13]COVER T, HART P. Nearest neighbor pattern classification [J]. IEEE Transactions on Information Theory, 1967, 13(1): 21??27.
[8]  [14]DU Hao, CHEN Yanqiu. Rectified nearest feature line segment for pattern classification [J]. Pattern Recognition, 2007, 40(5): 1486??1497.
[9]  [15]HAN Deqiang, HAN Chongzhao, YANG Yi. A novel classifier based on shortest feature line segment [J]. Pattern Recognition Letters, 2011, 32(3): 485??493.
[10]  [18]TACNET J M, DEZERT J. Cautious OWA and evidential reasoning for decision making under uncertainty [C]∥Proceeding of the 14th International Conference on Information Fusion. Piscataway, NJ, USA: IEEE, 2011: 1??8.
[11]  [23]DU Hao, CHEN Yanqiu. Rectified nearest feature line segment for pattern classification [J]. Pattern Recognition, 2007, 40(5): 1486??1497.
[12]  [4]王风华, 韩九强, 姚向华. 一种基于虹膜和人脸的多生物特征融合方法 [J]. 西安交通大学学报, 2008, 42(2): 133??137.
[13]  WANG Fenghua, HAN Jiuqiang, YAO Xianghua. Multimodal biometric fusion approach based on iris and face [J]. Journal of Xi’an Jiaotong University, 2008, 42(2): 133??137.
[14]  [12]XU Lei, KRZYZAK A, SUEN C Y. Methods of combining multiple classifiers and their applications to handwriting recognition [J]. IEEE Transactions on Systems, Man and Cybernetics, 1992, 22(3): 418??435.
[15]  [8]KIRA K, RENDELL L. A practical approach to feature selection [C]∥Proceedings of the 9th Machine Learning. Aberdeen, UK: Morgan Kaufmann Publishers, 1992: 249??256.
[16]  LIANG Shaoyi, HAN Deqiang, HAN Chongzhao. A novel diversity measure based on geometric relationship and its application to design of multiple classifier systems [J]. Acta Automatica Sinica, 2014, 40(3): 449??458.
[17]  [22]SMETS P. Data fusion in the transferable belief model [C]∥Proceedings of the 3rd International Conference on Information Fusion. Piscataway, NJ, USA: IEEE, 2000: 21??33.
[18]  YANG Yi, HAN Chongzhao, HAN Deqiang. Hyperspectral image classification based on feature subspace evaluation and multiple classifier fusion [J]. Journal of Xi’an Jiaotong University, 2010, 44(8): 20??24.
[19]  [3]张成军, 阴妍, 鲍久圣, 等. 多源信息融合故障诊断方法研究进展 [J]. 河北科技大学学报, 2014, 35(3): 213??221.
[20]  [9]MARKO R, IGOR K. Theoretical and empirical analysis of ReliefF and RReliefF [J]. Machine Learning, 2003, 53(1/2): 23??69.
[21]  [10]DIETTERICH T G. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting and randomization [J]. Machine Learning, 2000, 40(2): 139??157.
[22]  [11]梁绍一, 韩德强, 韩崇昭. 一种基于几何关系的多分类器差异性度量及其在多分类器系统构造中的应用 [J]. 自动化学报, 2014, 40(3): 449??458.
[23]  [16]HE Yunhui. Face recognition using kernel nearest feature classifiers [C]∥2006 International Conference on Computational Intelligence and Security. Piscataway, NJ, USA: IEEE, 2006: 678??683.
[24]  [17]杨艺, 韩德强, 韩崇昭. 基于排序融合的特征选择 [J]. 控制与决策, 2011, 26(3): 397??401.
[25]  YANG Yi, HAN Deqiang, HAN Chongzhao. Study on feature selection based on rank??level fusion [J]. Control and Decision, 2011, 26(3): 397??401.
[26]  [19]SHAFER G. A mathematical theory of evidence [M]. Princeton, USA: Princeton University Press, 1967.
[27]  [20]HAN Deqiang, DEZERT J, TACNET J M, et al. A fuzzy??cautious OWA approach with evidential reasoning [C]∥Proceedings of the 15th International Conference on Information Fusion. Piscataway, NJ, USA: IEEE, 2012: 278??285.
[28]  [21]VALENTE F, HERNANSKY H. Combination of acoustic classifiers based on Dempster??Shafer theory of evidence [C]∥IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway, NJ, USA: IEEE, 2007: 1129??1132.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133