|
- 2015
液力变矩器机构变量交互作用研究
|
Abstract:
为解决现有液力变矩器机构变量优化设计中采用分步优化方法存在的问题,通过对比台架试验数据确认了三维流体仿真结果的准确性,运用正交试验、通过全流道流体仿真得到了起动变矩比、最高效率和最高效率工况下泵轮扭矩系数;采用方差分析法研究了机构变量间的交互作用对液力变矩器性能影响的显著性,在考虑交互作用的基础上建立了五元三次响应曲面模型且应用多目标遗传算法进行了优化。研究表明:机构变量间交互作用显著影响着液力变矩器的性能,采用机构变量综合优化方法优化后,起动变矩比提高了0.336,最高效率提高了2.1%,最高效率工况下泵轮扭矩系数提高了0.306×10-6 min2?r-2?m-1。
In order to solve the problem caused by the separated step optimization for the design of the mechanism variables of torque converter, the significance of mechanism variables interaction was studied. Firstly, the accuracy of three dimensional fluid simulation results was confirmed in comparison with the bench test data. Secondly, starting torque ratio, highest efficiency and pump wheel torque coefficient at the transmission ratio of highest efficiency were obtained through full flow passages simulation based on the orthogonal experiments, and the significance of mechanism variables interaction was discussed through analysis of variance. Finally, the ternary quintic response surface model was established and optimized by using multi??objective genetic algorithm. The experiment results showed that mechanism variables interaction significantly affected torque converter performance and after optimization using the integrated optimization method of mechanism variables, starting torque ratio increased by 0.336, highest efficiency increased by 2.1%, and pump wheel torque coefficient at the transmission ratio of highest efficiency increased by 0.306×10-6 min2?r-2?m-1
[1] | LIU Cheng, PAN Xin, YAN Qingdong, et al. Effect of blade number on performance of torque converter and its optimization based on DOE and response surface methodology [J]. Transactions of Beijing Institute of Technology, 2012, 32(7): 689??693. |
[2] | [12]马文星. 液力传动与设计 [M]. 北京: 化学工业出版社, 2004: 182??184. |
[3] | [13]田中玄一. 实验设计法概论 [M]. 北京: 兵器工业出版社, 1990: 9??12. |
[4] | [14]朱经昌. 液力变矩器的设计与计算 [M]. 北京: 国防工业出版社, 1991: 74??75. |
[5] | [15]YADAV O P, RATHOD V, RATHORE A, et al. Optimizing reliability??based robust design model using multi??objective genetic algorithm [J]. Computers & Industrial Engineering, 2013, 66(2): 301??310. |
[6] | LEI Longyu, WANG Jian, HU Tinghui, et al. Angular of momentum distribution on blades of hydraulic torque converter [J]. Journal of Jilin University: Engineering and Technology Edition, 2009, 39(4): 880??884. |
[7] | WANG Lijun, WU Guangqiang, WANG Huan. Design strategy for modification of torque converters based on variation law of blade angle [J]. Journal of Tongji University: Natural Science Edition, 2011, 39(11): 1673??1679. |
[8] | [5]WU Guangqiang, YAN Peng. System for torque converter design and analysis based on CAD/CFD integrated platform [J]. Chinese Journal of Mechanical Engineering: English Edition, 2008, 21(4): 35??39. |
[9] | [6]韩克非, 吴光强, 王立军. 基于正交设计的泵轮叶栅关键参数对液力变矩器的性能影响优化分析 [J]. 中国电机工程学报, 2010, 30(35): 65??70. |
[10] | HAN Kefei, WU Guangqiang, WANG Lijun. Performance optimization analysis of the effects of pump cascade key parameters on torque converter based on orthogonal design [J]. Proceedings of the CSEE, 2010, 30(35): 65??70. |
[11] | [7]范春顺. 液力变矩器叶片数对其性能影响的研究 [D]. 长春: 吉林大学, 2007. |
[12] | [8]刘城, 潘鑫, 闫清东, 等. 基于DOE及RSM的液力变矩器叶片数对性能的影响及优化 [J]. 北京理工大学学报, 2012, 32(7): 689??693. |
[13] | [1]EJIRI E, KUBO M. Influence of the flatness ratio of an automotive torque converter on hydrodynamic performance [J]. ASME Journal of Fluids Engineering, 1999, 121(3): 614??620. |
[14] | [3]雷雨龙, 王健, 胡廷辉, 等. 液力变矩器叶栅动量矩分配规律 [J]. 吉林大学学报: 工学版, 2009, 39(4): 880??884. |
[15] | [4]王立军, 吴光强, 王欢. 基于叶片角变化规律的液力变矩器改型设计法 [J]. 同济大学学报: 自然科学版, 2011, 39(11): 1673??1679. |
[16] | [2]KIM G, JANG J. Effects of stator shapes on hydraulic performances of an automotive torque converter with a squashed torus [C]∥SAE 2002 World Congress. Washington, DC, USA: SAE, 2002: 155??160. |
[17] | [9]方杰, 齐迎春, 马文星, 等. 液力变矩器流场的数值模拟与分析 [J]. 同济大学学报: 工学版, 2005, 33(5): 673??677. |
[18] | FANG Jie, QI Yingchun, MA Wenxing, et al. Simulation and analysis of flow field in hydrodynamic torque converter [J]. Journal of Tongji University: Natural Science Edition, 2005, 33(5): 673??677. |
[19] | [10]JUNG J H, KANG S, HUR N. A numerical study of a torque converter with various methods for the accuracy improvement of performance prediction [J]. Progress in Computational Fluid Dynamics, 2011, 11(3): 261??268. |
[20] | [11]刘春宝, 马文星, 朱喜林. 液力变矩器三维瞬态流场计算 [J]. 机械工程学报, 2010, 46(14): 161??166. |
[21] | LIU Chunbao, MA Wenxing, ZHU Xilin. 3D transient calculation of internal flow field for hydrodynamic torque converter [J]. Chinese Journal of Mechanical Engineering, 2010, 46(14): 161??166. |