全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

非均质复合材料力学性能的确定性多尺度计算方法
Deterministic Multiscale Method for Heterogeneous Composite Material

DOI: 10.7652/xjtuxb201510002

Keywords: 有限细胞法,多尺度计算,非均质复合材料
finite cell method
,multiscale computation,heterogeneous material

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对具有多尺度特性的非均质复合材料进行结构强度分析,提出了一种确定性多尺度计算方法――有限细胞法(FCM)。该方法通过矩阵凝聚和插值近似得到粗网格的刚度矩阵,在计算得到粗网格解后,通过回代技术可获得全域细网格解。为验证FCM的计算精度和计算效率,构造了多个数值算例,并与理论和有限元(FEM)结果进行了对比,结果发现:相对于FEM,FCM可显著扩大计算规模,提高计算速度,且易于并行;相对于其他多尺度计算方法,FCM在构造粗网格刚度矩阵过程中无需引入微观边界条件,计算精度高,易于降尺度计算。因此,FCM是分析复合材料结构强度的一种有效的多尺度算法,同时该方法易于推广至多尺度的非线性结构分析、热分析、地下水渗流分析等领域。
For the strength analysis of heterogeneous materials in elasticity, a deterministic multiscale calculation method, finite cell method (FCM), is presented. The condensation and interpolation technique are adopted to obtain the coarse element stiffness matrix, then the original problem can be solved in coarse??scale, and the fine??scale solution can be sought out by back substitution. The comparison with analytic method and finite element method (FEM) on several numerical examples indicates that FCM enables to significantly expand computational scale and greatly improve computing rate. In FCM, the artificial boundary conditions are unnecessary for constructing macroscopic meshes, and the downscaled computing can be easily performed. FCM is also feasible for non??linear multiscale structure analysis, thermal analysis and porous flow analysis

References

[1]  ZHANG Hongwu, ZHANG Sheng, BI Jinying. Thermodynamic analysis of multiphase periodic structures based on a spatial and temporal multiple scale method [J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(2): 226??235.
[2]  [10]ZHANG H, WU J, L?a J, et al. Extended multiscale finite element method for mechanical analysis of heterogeneous materials [J]. Acta Mechanica Sinica, 2010, 26(6): 899??920.
[3]  [13]XIA Z, ZHOU C, YONG Q, et al. On selection of repeated unit cell model and application of unified periodic boundary conditions in micro??mechanical analysis of composites [J]. International Journal of Solids and Structures, 2006, 43(2): 266??278.
[4]  [14]LI X, LIU Q, ZHANG J. A micro??macro homogenization approach for discrete particle assembly Cosserat continuum modeling of granular materials [J]. International Journal of Solids and Structures, 2010, 47(2): 291??303. [15]PECULLAN S, GIBIANSKY L V, TORQUATO S. Scale effects on the elastic behavior of periodic and hierarchical two??dimensional composites [J]. Journal of the Mechanics and Physics of Solids, 1999, 47(7): 1509??1542.
[5]  [1]ROUET??LEDUC B, BARROS K, CIEREN E, et al. Spatial adaptive sampling in multiscale simulation [J]. Computer Physics Communications, 2014, 185(7): 1857??1864.
[6]  YI Lei, WEN Yi. Topology optimization of rocket sled structure under inertial loads [J]. Chinese Journal of Applied Mechanics, 2013 , 30(1): 80??85.
[7]  [5]MIEHE C C B. On multiscale FE analyses of heterogeneous structures: from homogenization to multigrid solvers [J]. International Journal for Numerical Methods in Engineering, 2007, 71(10): 1135??1180.
[8]  [6]ZHANG H W, ZHANG S, BI J Y, et al. Thermo??mechanical analysis of periodic multiphase materials by a multiscale asymptotic homogenization approach [J]. International Journal for Numerical Methods in Engineering, 2007, 69(1): 87??113.
[9]  ZHANG Hongwu, WU Jingkai, LIU Hui, et al. Basic theory of extended multiscale finite element method
[10]  [J]. Computer Aided Engineering, 2010, 19(2): 3??9.
[11]  [11]E Weinan, ENGQUIST B, LI X, et al. Heterogeneous multiscale methods: a review [J]. Communications in computational physics, 2007, 2(3): 367??450.
[12]  [12]E Weinan, ENGQUIST B, HUANG Z. Heterogeneous multiscale method: a general methodology for multiscale modeling [J]. Physical Review: B, 2003, 67(9): 092101.
[13]  [2]KANOUT?I P, BOSO D P, CHABOCHE J L, et al. Multiscale methods for composites: a review [J]. Archives of Computational Methods in Engineering, 2009, 16(1): 31??75.
[14]  [3]FISH J, SHEK K, PANDHEERADI M, et al. Computational plasticity for composite structures based on mathematical homogenization: theory and practice [J]. Computer Methods in Applied Mechanics and Engineering, 1997, 148(1): 53??73.
[15]  [4]易垒, 文毅. 惯性载荷作用下火箭橇结构拓扑优化设计 [J]. 应用力学学报, 2013, 30(1): 80??85
[16]  [7]张洪武, 张盛, 毕金英. 周期性结构热动力时间空间多尺度分析 [J]. 力学学报, 2006, 38(2): 226??235.
[17]  [8]HOU T Y, WU X H. A multiscale finite element method for elliptic problems in composite materials and porous media V. Journal of Computational Physics, 1997, 134(1): 169??189.
[18]  [9]张洪武, 吴敬凯, 刘辉, 等. 扩展的多尺度有限元法基本原理 [J]. 计算机辅助工程, 2010, 19(2): 3??9
[19]  [19]TIMOSHENKO S, GOODIER J N. Theory of elasticity [M]. New York, USA: McGraw??Hill, 1951: 506.
[20]  [16]DOROBANTU M, ENGQUIST B. Wavelet??based numerical homogenization [J]. SIAM Journal on Numerical Analysis, 1998, 35(2): 540??559.
[21]  [17]裴世源, 徐华, 马石磊, 等. 多尺度表面织构流体润滑问题的快速求解方法 [J]. 西安交通大学学报, 2011, 45(5): 119??126.
[22]  PEI Shiyan, XU Hua, MA Shilei, et al. Multiscale method for modeling surface texture effects in hydrodynamic lubrication regime [J]. Journal of Xi’an Jiaotong University, 2011, 45(5): 119??126.
[23]  [18]PEI S, MA S, XU H, et al. A multiscale method of modeling surface texture in hydrodynamic regime [J]. Tribology International, 2011, 44(12): 1810??1818.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133