全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

输电导线覆冰生长及影响因素数值分析模型
Numerical Simulation for Icing and Influence on Transmission Line

DOI: 10.7652/xjtuxb201507020

Keywords: 输电线路,覆冰,数值模型,两相流模型,质量平衡
transmission line
,icing,numerical model,two??phase flow model,mass balance

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对现有输电线路覆冰生长模型仅注重覆冰生长量、难于准确预测覆冰形貌的问题,建立了输电导线局部冰层增长计算模型。采用空气动力学方程求解覆冰导线周围气流场参数、覆冰表面对流换热系数,进而采用欧拉二相流模型计算覆冰导线表面过冷却液滴碰撞系数;建立包含液滴碰撞、溢流、蒸发、升华等因素的质量平衡方程,基于此方程推导出计算对象热量平衡方程,并采用多级假设、一维搜索求解方程中多个未知量,得出各单元的冻结系数和覆冰质量。算例表明:局部碰撞系数及碰撞区域随风速的提高快速增大,覆冰量相应增大;而环境温度及导线电流的增加使得溢流水出现,覆冰类型由雾凇向雨凇过渡;模型所得覆冰形貌和覆冰量与已有实验结果基本相符,计算结果满足电力系统工程需要。
The existing transmission line ice growth models only focus on the ice mass, it is difficult for them to predict ice morphology accurately. A computational model for local ice accretion on transmission lines is established in this study. Air dynamics equation is considered to solve parameters of the flow field around conductor, then Eulerian two??phase model is chosen to calculate droplet collision coefficient on the surface of iced conductor. Mass balance equation, including the parameters of droplet collision, water runback, evaporation and sublimation, is established, then icing heat balance equation is constructed. All unknown variables in the model are acquired by one??dimensional search under multiple hypothesis, and the freeze coefficient and ice mass of each unit are obtained. Eventually, the cases show that the local droplet collision coefficient and collision area increase with wind speed; rising temperature and conductor current leads to the water runback to transform rime ice type to glaze ice type. The obtained icing morphology and weight coincide well with the existing experimental results

References

[1]  [6]蒋兴良, 范松海, 胡建林, 等. 输电线路直流短路融冰的临界电流分析 [J]. 中国电机工程学报, 2010, 30(1): 111??116.
[2]  JIANG Xingliang, FAN Songhai, HU Jianlin, et al. Analysis of critical ice??melting current for short??circuit DC transmission line [J]. Proceedings of the CSEE 2010, 30(1): 111??116.
[3]  [10]戴栋, 黄筱婷, 代洲. 基于支持向量机的输电线路覆冰回归模型 [J]. 高电压技术, 2013, 39(11): 2822??2828.
[4]  DAI Dong, HUANG Xiaoting, DAI Zhou. Regression model for transmission lines icing based on support vector machine [J]. High Voltage Engineering, 2013, 39(11): 2822??2828.
[5]  [11]郝艳捧, 薛艺为, 杨林, 等. 复合绝缘子不同部位水滴撞击特性及其影响因素 [J]. 电网技术, 2014, 38(5): 1366??1372.
[6]  [12]李学林, 姚涛. 特高压变电站支柱绝缘子重覆冰闪络仿真计算与试验分析 [J]. 高电压技术, 2013, 39(3): 612??617.
[7]  [17]ZSOLT P. Modeling and simulation of the ice melting process on a current??carrying conductor [D]. Quebec, Canada: Quebec University, 2006.
[8]  [18]CANSDALE J T, MCNAUGHTON I I. Calculation of surface temperature and ice accretion rate in mixed water droplet ice crystal cloud [R]. Hampshire, UK: Royal Aircraft Establishment, 1977: 7??13.
[9]  [19]HUNEAULT M, LANGHEIT C, CARON J. Combined models for glaze ice accretion and de??icing of current??carrying electrical conductors [J]. IEEE Transactions on Power Delivery, 2005, 20(2): 1611??1616.
[10]  HUANG Xinbo, OUYANG Lisha. Analysis on key influence factor of transmission line icing [J]. High Voltage Engineering, 2011, 37(7): 1677??1682.
[11]  [9]阳林, 郝艳捧. 架空输电线路覆冰状态评估模糊专家系统 [J]. 高电压技术, 2011, 37(12): 3028??3035.
[12]  YANG Lin, HAO Yanpeng. Fuzzy expert system for condition assessment of overhead transmission line icing [J]. High Voltage Engineering, 2011, 37(12): 3028??3035.
[13]  [13]FU P, FARZANEH M. Two??dimensional modelling of the ice accretion process on transmission line wires and conductors [J]. Cold Regions Science and Technology, 2006, 46(2): 132??146.
[14]  [14]梁曦东, 李雨佳, 张轶博, 等. 输电导线的覆冰时变仿真模型 [J]. 高电压技术, 2014, 40(2): 336??343.
[15]  LIANG Xidong, LI Yujia, ZHANG Yibo, et al. Time??dependent simulation model of ice accretion on transmission line [J]. High Voltage Engineering, 2014, 40(2): 336??343.
[16]  [15]ZHANG Q, YANG Y. A new simpler rotation curvature correction method for Spalart??Allmaras turbulence model [J]. Chinese Journal of Aeronautics, 2013, 26(2): 326??333
[17]  [16]KIM J W. Ice accretion modeling using an Eulerian approach for droplet impingement [C]∥51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston, Virginia, USA: AIAA, 2013: 1??11.
[18]  [1]FARZANEH M. Atmosphere icing of power networks [M]. Berlin, Germany: Springer, 2008.
[19]  [4]MAKKONEN L. Modeling of ice accretion on wires [J]. Journal of Climate Applied Meteorology, 1984, 23(6): 929??939.
[20]  [5]MAKKONEN L, STALLABRASS J R. Experiments on the cloud droplet collision efficiency of cylinders [J]. Journal of Climate Applied Meteorology, 1987, 26(10): 1406??1411.
[21]  [7]孙才新, 蒋兴良, 熊启新, 等. 导线覆冰及其干湿增长临界条件分析 [J]. 中国电机工程学报, 2003, 23(3): 141??145.
[22]  SUN Caixin, JIANG Xingliang, XIONG Qixin, et al. Analysis of critical icing conditions of conductor and wet??dry grown [J]. Proceedings of the CSEE, 2003, 23(3): 141??145.
[23]  [8]黄新波, 欧阳丽莎. 输电线路覆冰关键影响因素分析 [J]. 高电压技术, 2011, 37(7): 1677??1682.
[24]  HAO Yanpeng, XUE Yiwei, YANG Lin, et al. Characteristics of different parts of composite insulators impacted by water droplets and its influencing factors [J]. Power System Technology, 2014, 38(5): 1366??1372.
[25]  LI Xuelin, YAO Tao. Study on flashover model of UHV substation post insulator in serious icing condition [J]. High Voltage Engineering, 2013, 39(3): 612??617.
[26]  [2]HUANG Xinbo, LIN Shufan. Ice growth prediction model of transmission lines based on Mamdani??type fuzzy neural network [C]∥Proceedings of the 15th International Workshop on Atmospheric Icing of Structures. Mount Pearl, Newfoundland, Canada: IWAIS, 2013: 59??71.
[27]  [3]王璋奇, 齐立忠, 杨文刚, 等. 集中质量法模拟覆冰在架空线脱冰动张力实验中的适用性研究 [J]. 中国电机工程学报, 2014, 34(12): 1982??1988.
[28]  WANG Zhangqi, QI Lizhong, YANG Wengang, et al. Research on the applicability of lumped mass method for cable’s dynamic tension in the ice shedding experiment [J]. Proceedings of the CSEE, 2014, 34(12): 1982??1988.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133