|
- 2015
间隙结构对轮缘密封封严性能及透平级气动性能影响的数值研究
|
Abstract:
采用数值求解三维RANS方程和SST湍流模型的方法,研究了间隙结构对轮缘密封封严性能以及封严射流对透平级气动性能的影响。首先,分别对Aachen的一级半透平以及实验测得的轴向轮缘密封结构进行了数值计算,验证了所用数值方法在透平级气动性能以及密封封严性能方面计算的有效性。在此基础上,分析对比了5种封严射流流量下出口面积相同的直缝间隙、倾斜间隙,以及在倾斜间隙基础上改型得到的渐缩、渐扩间隙等4种密封结构的封严性能和封严射流对透平级气动性能的影响。结果表明,轮缘密封间隙结构会影响到间隙射流,进而导致不同间隙结构下透平级总压损失不同。与直缝间隙相比,倾斜间隙可以有效减小封严射流造成的总压损失,同时具有较高的封严性能;渐缩、渐扩间隙的封严性能与倾斜间隙相近,其中渐扩间隙可以更为有效地减小封严射流造成的气动损失。
The effects of the turbine rim seal configurations on sealing effectiveness and aerodynamic performance of turbine stage are numerically investigated with 3D Reynolds??Averaged Navier??Stokes (RANS) equations and SST turbulent model. The Aachen 1.5 turbine stage and axial rim seal configuration from Bath rig are selected as the research objective. The numerical results coincide well with experimental data. The accuracy of this approach for calculating turbine stage aerodynamic performance and sealing effectiveness are verified. The aerodynamic performance of the turbine stage and sealing effectiveness are comparatively analyzed for five purge mass flow ratios at four kinds of rim seals with different slot geometries. The numerical results show that the slot geometry plays an important role in aerodynamic performance of turbine stage. Compared with straight slot rim seal, inclined slot rim seal reduces total pressure loss in blade passage and also owns the better sealing performance. Two types of new seal, divergent and convergent rim seal, perform as inclined rim seal, and the divergent rim seal configuration facilitates reducing pressure loss
[1] | [6]ZHOU D W, ROY R P, WANG C Z, et al. Main gas ingestion in a turbine stage for three rim cavity configurations [J]. ASME Journal of Turbomachinery, 2011, 133(3): 031023. |
[2] | [1]BOHN D E, DECKER A, MA H W, et al. Influence of sealing air mass flow on the velocity distribution in and inside the rim seal of the upstream cavity of a 1??5??stage turbine, ASME GT2003??38459 [R]. New York, USA: ASME, 2003. |
[3] | [2]TERAMACHI K, MANABE T, YANAGIDANI N, et al. Effect of geometry and fin overlap on sealing performance of rim seals, AIAA 2002??3938 [R]. Reston, USA: AIAA, 2002. |
[4] | [5]MIRZAMOGHADAM A V, HEITLAND G, MORRIS M C, et al. 3D CFD ingestion evaluation of a high pressure turbine rim seal disk cavity, ASME GT2008??50531 [R]. New York, USA: ASME, 2008 |
[5] | [7]孙皓, 宋立明, 李军, 等. 非轴对称端壁透平级气动性能的数值研究 [J]. 西安交通大学学报, 2013, 47(7): 30??35. |
[6] | [3]NARZARY D, FENG F J, ROY R P, et al. Ingestion into a rotor??stator disk cavity with single??and double??rim seals, AIAA 2005??3982 [R]. Reston, USA: AIAA, 2005. |
[7] | [4]HILLS N J, CHEW J W, TURNER A B. Computational and mathematical model of turbine rim seal ingestion [J]. ASME Journal of Turbomachinery, 2002, 124(2): 306??315. |
[8] | [8]SANGAN M C, ZHOU KUNYUAN, OWEN M J, et al. Experimental measurements of ingestion through turbine rim seals, ASME GT2011??45310 [R]. New York, USA: ASME, 2011. |
[9] | [9]WALRAEVENS R E, GALLUS H E, JUNG A R, et al. Experimental and computational study of the unsteady flow in a 1??5 stage axial turbine with emphasis on the secondary flow in the second stator, ASME 98??GT??254 [R]. New York, USA: ASME, 1998. |
[10] | [10]高庆, 陶加银, 宋立明, 等. 涡轮轮缘密封封严效率的数值研究 [J]. 西安交通大学学报, 2013, 47(5): 12??17. |
[11] | SUN Hao, SONG Liming, LI Jun, et al. Numerical investigation on aerodynamic performance of turbine stage with nonaxisymmetric end wall profiling [J]. Journal of Xi’an Jiaotong University, 2013, 47(5): 12??17. |
[12] | GAO Qing, TAO Jiayin, SONG Liming, et al. Numerical investigation on the sealing efficiency of the turbine rim seal [J]. Journal of Xi’an Jiaotong University, 2013, 47(5): 12??17. |
[13] | [11]REID K, DENTON J, PULLAN G C E, et al. The interaction of turbine inter??platform leakage flow with the mainstream flow, ASME GT2005??681551 [R]. New York, USA: ASME, 2005. |