|
- 2016
表情驱动下脑电信号的建模仿真及分类识别
|
Abstract:
针对自发型脑电信号识别率低、个体差异度大等问题,提出了一种新的基于表情驱动脑电信号的脑机接口方式,并进行了建模仿真及实验验证。利用神经元集群模型对表情驱动脑电信号进行机理建模与仿真分析,得到自发表情的相关脑区及表情驱动脑电信号的频率分布特性;提出了一种基于小波变换和人工神经网络模型映射的表情驱动下脑电信号分析识别方法,有效提高了表情驱动下脑电信号的识别率。从神经生理学角度验证了表情驱动脑电信号的特征来源是受大脑前额叶皮层和边缘系统相互协调共同控制的,并通过实验验证了所提脑电信号分类识别算法切实有效,其最高分类准确率可达85%。
An expression driven brain??computer interface system is proposed to solve the low recognition rate and huge individual differences of spontaneous electroencephalogram (EEG) signal, and simulation and experimental verification are conducted. A neural mass model is used in mechanism modeling and simulation of expressions driven EEG signal, and the results show the related brain areas of facial expression and the frequency distribution characteristics of expression driven EEG signals. A classification and recognition method based on the wavelet transform and an artificial neural network is put forward, to improve the recognition rate of expression driven EEG signal. This research elaborates that it is the prefrontal cortex and the limbic system to cooperate on the generation and control of expression driven EEG signals, and verifies the feasibility of the classification and recognition method whose highest off recognition rate is 85%
[1] | [1]张小栋, 李睿, 李耀楠. 脑控技术的研究与展望 [J]. 振动、测试与诊断, 2014, 34(2): 205??211. |
[2] | ZHANG Xiaodong, LI Rui, LI Yaonan. Research and forecast on brain??computer interface [J]. Journal of Vibration, Measurement and Diagnosis, 2014, 34(2): 205??211. |
[3] | [2]PRICE J L, DREVETS W C. Neurocircuitry of mood disorders [J]. Neuropsychopharmacology, 2010, 35(1): 192??216. |
[4] | [3]HODGKIN A L, HUXLEY A F. A quantitative description of membrane current and its application to conduction and excitation in nerve [J]. The Journal of Physiology, 1952, 117(4): 500??544. |
[5] | [4]CHAY T R. Chaos in a three??variable model of an excitable cell [J]. Physica: DNonlinear Phenomena, 1985, 16(2): 233??242. |
[6] | [5]TRAUB R D, CONTRERAS D, CUNNINGHAM M O, et al. Single??column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts [J]. Journal of Neurophysiology, 2010, 93(4): 2194??2232. |
[7] | [6]LOPES F H, HOEKS A, SMITS H, et al. Model of brain rhythmic activity [J]. Kybernetik, 1974, 15(1): 27??37. |
[8] | [7]WENDLING F, BELLANGER J J, BARTOLOMEI F, et al. Relevance of nonlinear lumped??parameter models in the analysis of depth??EEG epileptic signals [J]. Biological Cybernetics, 2000, 83: 367??378. |
[9] | WANG Deng, MIAO Duoqian, WANG Ruizhi. A new method of EEG classification with feature extraction based on wavelet packet decomposition [J]. Acta Electronica Sinica, 2013, 41(1): 193??198. |
[10] | [10]张宇博, 舒红平. 改进的BP神经网络算法及其应用 [J]. 网络安全技术与应用, 2007, 27(12): 172??175. |
[11] | ZHANG Yubo, SHU Hongping. Optimized BP neural networks algorithm and its application [J]. Computer Simulation, 2015, 27(12): 172??175. |
[12] | [8]JANSEN B H, RIT V G. Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns [J]. Biological Cybernetics, 1995, 73(4): 357??366. |
[13] | [9]王登, 苗夺谦, 王睿智. 一种新的基于小波包分解的EEG特征抽取与识别方法研究 [J]. 电子学报, 2013, 41(1): 193??198. |