全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

考虑状态约束的液压系统自适应控制
Adaptive Control of Hydraulic Systems with State Constraints

DOI: 10.7652/xjtuxb201701015

Keywords: 液压伺服系统,自适应控制,障碍李雅普诺夫函数,干扰观测器
hydraulic system
,adaptive control,barrier Lyapunov function,disturbance observer

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对液压伺服系统中的状态约束和不确定性问题,提出一种考虑状态约束的液压伺服系统自适应控制算法。该算法基于障碍李雅普诺夫函数设计了有限时间干扰观测器和自适应控制器,其中:有限时间干扰观测器用于干扰估计,且能保证估计精确;自适应控制器用于处理系统参数不确定性;障碍李雅普诺夫函数用于约束状态并保证闭环系统稳定。实验结果表明,该算法能够约束系统输出速度和加速度,系统期望跟踪指令幅值为10 mm,稳态跟踪误差最大约为0.06 mm,相对跟踪误差约为0.6%,系统跟踪精度得到了提高。
An adaptive controller with state constraints is proposed for hydraulic systems, where a finite time disturbance observer and an adaptive controller are designed following barrier Lyapunov function. The finite time disturbance observer ensures disturbance estimation accuracy, and the adaptive controller handles parametric uncertainties. Barrier Lyapunov function is employed for state constraints to stabilize the closed loop system. Theoretically, the controller guarantees asymptotic tracking performance. Experimental results show that the algorithm can constrain the output velocity and acceleration, the maximum static tracking error is 0.06 mm when the amplitude of the desired tracking trajectory is 10 mm, and the maximum relative tracking error reaches 0.6%, thus the system tracking accuracy is obviously improved

References

[1]  [1]MERRITT H E. Hydraulic control systems [M]. New York, USA: Wiley, 1967: 100??175.
[2]  [2]YAO Jianyong, JIAO Zongxia, MA Dawei, et al. High??accuracy tracking control of hydraulic rotary actuators with modeling uncertainties [J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(2): 633??641.
[3]  [3]YAO Bin, BU Fangping, REEDY J, et al. Adaptive robust motion control of single??rod hydraulic actuators: theory and experiments [J]. IEEE/ASME Transactions on Mechatronics, 2000, 5(1): 79??91.
[4]  [4]WHATTON J. Fluid power systems [M]. Englewood Cliffs, NJ, USA: Prentice??Hall, 1989: 65??109.
[5]  [5]YAO Jianyong, JIAO Zongxia, MA Dawei. Extended state observer??based output feedback nonlinear robust control of hydraulic systems with backstepping [J]. IEEE Transactions on Industrial Electronics, 2014, 61(11): 6285??6293.
[6]  [7]SCHKODA R F. Sliding mode control of a hydraulically actuated load application unit with application to wind turbine drivetrain testing [J]. IEEE Transactions on Control Systems Technology, 2015, 23(6): 2203??2215.
[7]  [8]NGO K B, MAHONY R, JIANG Zhongping. Integrator backstepping using barrier functions for systems with multiple state constraints [C]∥Proceedings 44th IEEE Conference on Decision & Control. Piscataway, NJ, USA: IEEE, 2005: 8306??8312.
[8]  [9]TEEK P, GE Shuzhi, TAY E H. Barrier Lyapunov functions for the control of output??constrained nonlinear systems [J]. Automatica, 2009, 45(4): 918??927.
[9]  [10]DENG Wenxiang, YAO Jianyong, JIAO Zongxia. Adaptive backstepping motion control of hydraulic actuators with velocity and acceleration constraints [C]∥Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference. Piscataway, NJ, USA: IEEE, 2014: 219??224.
[10]  [6]YAO Jianyong, DENG Wenxiang, JIAO Zongxia. Adaptive control of hydraulic actuators with LuGre model based friction compensation [J]. IEEE Transactions on Industrial Electronics, 2015, 62(10): 6469??6477.
[11]  [15]LANDU I D, LOZANO R, M’SAAD M. Adaptive control [M]. Berlin, Germany: Springer, 1998: 75??89.
[12]  [16]徐张宝, 马大为, 姚建勇, 等. 采用干扰估计的液压系统自适应鲁棒控制 [J]. 西安交通大学学报, 2016, 50(8): 123??129.
[13]  XU Zhangbao, MA Dawei, YAO Jianyong, et al. Adaptive robust control for hydraulic actuators with accurate disturbance estimation [J]. Journal of Xi’an Jiaotong University, 2016, 50(8): 123??129.
[14]  [11]MOHANTY A, YAO Bin. Indirect adaptive robust control of hydraulic manipulators with accurate parameter estimates [J]. IEEE Transactions on Control Systems Technology, 2011, 19(3): 567??575.
[15]  [12]SASTRY S, BODSON M. Adaptive control: stability, convergence and robustness [M]. Englewood Cliffs, NJ, USA: Prentice??Hall, 1989: 07632.
[16]  [13]YAO Bin, TOMIZUKA M. Smooth robust adaptive sliding mode control of robot manipulators with guaranteed transient performance [J]. Journal Dynamic Systems Measurement and Control, 1996, 118(4): 764??775.
[17]  [14]SHTESSEL Y, SHKOLNIKOV I, LEVANT A. Smooth second??order sliding modes: missile guidance application [J]. Automatica, 2007, 43(8): 1470??1476.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133