全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

结合面切向接触等效黏性阻尼分形模型
Fractal Model of Equivalent Viscous Damping for Tangential Contact in Joint Interfaces

DOI: 10.7652/xjtuxb201701001

Keywords: 机械结构,结合面,切向接触阻尼,损耗因子,分形模型
mechanical structure
,joint interface,tangential contact damping,energy dissipation factor,fractal model

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于MB接触分形理论、结合面切向接触阻尼耗能机理以及阻尼损耗因子的定义,建立了结合面切向接触等效黏性阻尼的分形模型及其损耗因子模型。所建模型表明,结合面切向接触等效黏性阻尼与结合面法向接触载荷、摩擦系数、材料塑性指数、结合面上的切向动态载荷幅值与法向接触载荷之比(简称切法向载荷比)、结合面分形维数以及分形粗糙度参数之间具有复杂的非线性关系,而结合面切向接触阻尼损耗因子与结合面分形维数和分形粗糙度参数无关,仅与切法向载荷比和摩擦系数有关。模型的仿真结果表明,结合面切向接触阻尼损耗因子随着切法向载荷比的增大而增大,随结合面摩擦系数的增大而减小;结合面切向接触等效黏性阻尼随着结合面法向接触载荷、摩擦系数、材料塑性指数的增大而增大,随着结合面分形粗糙度的增大而减小;结合面切向接触等效黏性阻尼随结合面分形维数的变化规律较为复杂,先随着分形维数的增大而增大,在分形维数值1.65附近出现最大值,而后随着分形维数的增大而减小。
Based on the MB contact fractal theory and the mechanism of energy dissipation of tangential contact damping in joint interfaces as well as the definition of damping energy dissipation factor, the fractal model of equivalent viscous damping for tangential contact in joint interfaces and its energy dissipation factor model are proposed. It is shown from the models that there exist complex nonlinear relationships between the equivalent viscous damping of tangential contact in joint interfaces and such factors as the normal contact load, the friction coefficient, the plastic index of contact materials, the ratio of the tangential dynamic load amplitude to normal contact load (named tangential??normal load ratio for short), the fractal dimension, and the fractal roughness of joint interfaces. However, the energy dissipation factor of tangential contact damping is independent of the fractal dimension and fractal roughness, but only depends on the tangential??normal load ratio. Numerical simulations of the models show that the energy dissipation factor increases with the tangential??normal load ratio, but decreases with the friction coefficient of joint interfaces. The tangential contact equivalent viscous damping of joint interfaces increases with the normal contact load, the friction coefficient, and the plastic index of contact materials, but decreases with the fractal roughness. The variation rule of equivalent viscous damping with the fractal dimension is very complex: firstly it increases with the fractal dimension, and approaches a max value when the fractal dimension is equal to 1.65 or so, then decreases with the fractal dimension

References

[1]  [3]张学良, 黄玉美, 温淑花. 结合面接触刚度分形模型研究 [J]. 农业机械学报, 2000, 31(4): 89??91.
[2]  [6]温淑花, 张学良, 武美先, 等. 结合面切向接触刚度分形模型及其仿真 [J]. 农业机械学报, 2009, 40(12): 223??227.
[3]  YOU Jinmin, CHEN Tianning. Fractal model for normal dynamic parameters of joint surfaces [J]. Journal of Xi’an Jiaotong University, 2009, 43(9): 91??94.
[4]  [9]尤晋闽, 陈天宁. 基于分形接触理论的结合面法向接触参数预估 [J]. 上海交通大学学报, 2011, 45(9): 1275??1280.
[5]  YOU Jinmin, CHEN Tianning. Estimation for normal parameters of joint surfaces based on fractal theory [J]. Journal of Shanghai Jiaotong University, 2011, 45(9): 1275??1280.
[6]  [10]张学良, 丁红钦, 兰国生, 等. 基于分形理论的结合面法向接触阻尼与损耗因子模型 [J]. 农业机械学报, 2013, 44(6): 287??294.
[7]  ZHANG Xueliang, DING Hongqin, LAN Guosheng, et al. Normal contact damping and dissipation factor model of joint interfaces based on fractal theory [J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(12): 223??227.
[8]  [11]李小彭, 王伟, 赵米鹊, 等. 考虑摩擦因素影响的结合面切向接触阻尼分形预估模型及其仿真 [J]. 机械工程学报, 2012, 48(23): 46??50.
[9]  [1]张学良. 机械结合面动态特性及应用 [M]. 北京: 中国科学技术出版社, 2002: 1??2.
[10]  ZHANG Xueliang, HUANG Yumei, WEN Shuhua. Fractal model of contact stiffness of joint surfaces [J]. Transactions of the Chinese Society for Agricultural Machinery, 2000, 31(4): 89??91.
[11]  [4]张学良, 温淑花, 徐格宁, 等. 结合部切向接触刚度分形模型研究 [J]. 应用力学学报, 2003, 20(1): 70??72.
[12]  LI Xiaopeng, WANG Wei, ZHAO Mique, et al. Fractal prediction model for tangential contact damping of joint surface considering friction factors and its simulation [J]. Journal of Mechanical Engineering, 2012, 48(23): 46??50.
[13]  [12]张学良, 王南山, 温淑花, 等. 机械结合面切向接触阻尼能量耗散弹塑性分形模型 [J]. 机械工程学报, 2013, 49(12): 43??49.
[14]  [15]田红亮, 方子帆, 朱大林, 等. 固定接触界面切向静弹性刚度问题研究 [J]. 应用力学学报, 2011, 28(5): 458??464.
[15]  WEN Shuhua, ZHANG Xueliang, WU Meixian, et al. Fractal model and simulation of normal contact stiffness of joint interfaces and its simulation [J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(11): 197??202.
[16]  [7]张学良, 温淑花, 兰国生, 等. 平面结合面切向接触阻尼分形模型及其仿真 [J]. 西安交通大学报, 2011, 45(5): 74??77, 136.
[17]  ZHANG Xueliang, WEN Shuhua, LAN Guosheng, et al. Fractal model for tangential contact damping of plane joint interfaces with simulation [J]. Journal of Xi’an Jiaotong University, 2011, 45(5): 74??77.
[18]  ZHANG Xueliang, WANG Nanshan, WEN Shuhua, et al. Elastoplastic fractal model for tangential contact damping energy dissipation of machine joint interfaces [J]. Journal of Mechanical Engineering, 2013, 49(12): 43??49.
[19]  [14]WANG S, KOMVOPOULOS K. A fractal theory of the interracial temperature distribution in the slow sliding regime: part IElastic contact and heat transfer analysis [J]. ASME Journal of Tribology, 1994, 116(4): 812??823.
[20]  [2]戴德沛. 阻尼减振降噪技术 [M]. 西安: 西安交通大学出版社, 1986: 11, 234.
[21]  ZHANG Xueliang, WEN Shuhua, XU Gening, et al. Fractal model of the tangential contact stiffness of machined surfaces in contact [J]. Chinese Journal of Applied Mechanics, 2003, 20(1): 70??72.
[22]  [5]温淑花, 张学良, 武美先, 等. 结合面法向接触刚度分形模型建立与仿真 [J]. 农业机械学报, 2009, 40(11): 197??202.
[23]  WEN Shuhua, ZHANG Xueliang, WU Meixian, et al. Fractal model of tangential contact stiffness of joint interfaces and its simulation [J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(12): 223??227.
[24]  [8]尤晋闽, 陈天宁. 结合面法向动态参数的分形模型 [J]. 西安交通大学学报, 2009, 43(9): 91??94.
[25]  [13]ZHANG Xueliang, WANG Nanshan, LAN Guosheng, et al. Tangential damping and its dissipation factor models of joint interfaces based on fractal theory with simulations [J]. ASME Journal of Tribology, 2014, 136(1): 011704.
[26]  TIAN Hongliang, FANG Zifan, ZHU Dalin, et al. Investigation on tangential static elastic stiffness of fixed contact interface [J]. Chinese Journal of Applied Mechanics, 2011, 28(5): 458??464.
[27]  [16]JOHNSON K L. Contact mechanics [M]. Cambridge, UK: Cambridge University Press, 1985: 227.
[28]  [17]温淑花, 张宗阳, 张学良, 等. 固定结合面刚度分形模型 [J]. 农业机械学报, 2013, 44(2): 255??260.
[29]  WEN Shuhua, ZHANG Zongyang, ZHANG Xueliang, et al. Stiffness fractal model for fixed joint interfaces [J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(2): 255??260.
[30]  [18]LIOU J L. The theoretical study for microcontact model with variable topography parameters [D]. Taiwan: Cheng Kung University, 2006: 97.
[31]  [19]BHUSHAN B. Analysis of the real area of contact between a polymeric magnetic medium and a rigid surface [J]. ASME Journal of Tribology, 1984, 106(1): 26??34.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133