|
- 2016
采用互补信息熵的分类器集成差异性度量方法
|
Abstract:
针对多分类器系统差异性评价中无法直接处理模糊数据的问题,提出了一种采用互补信息熵的分类器集成差异性度量(CIE)方法。首先利用训练数据生成一系列基分类器,并对测试数据进行分类,将分类结果依次组合生成分类数据空间;然后采用模糊关系条件下的互补信息熵度量分类数据空间蕴含的不确定信息量,据此信息量判断基分类器间的差异性;最后以加入基分类器后数据空间差异性增加为选择分类器的基本准则,构建集成分类器系统,用于验证CIE差异性度量与集成分类精度之间的关系。实验结果表明,与Q统计方法相比,利用CIE方法进行分类器集成,平均集成分类精度提高了2.03%,分类器系统集成规模降低约17%,而且提高了集成系统处理多样化数据的能力。
A novel diversity measure method using complement information entropy (CIE) is proposed to solve the problem that the diversity estimation of multiple classifier systems is unable to deal directly with fuzzy data. A set of base classifiers is generated by using training data, and then is used to label test data. The outputs of the classifiers are reorganized into a new classification data space. Then the complement information entropy model is introduced under fuzzy relation to measure uncertainty information of the new space and the uncertainty information is used to estimate the diversity of base classifiers. Finally, an ensemble system is constructed based on the criterion that the ensemble diversity of the classifier set increases when a base classifier is added, and the ensemble system is used to validate the performance of CIE. Experimental results and a comparison with the Q??statistic method show that the average classification accuracy of CIE increases by 2.03%, and the number of ensemble classifiers reduces by 17%. Moreover, CIE also improves the ability of ensemble systems to process diverse data
[1] | [3]张宏达, 王晓丹, 韩钧, 等. 分类器集成差异性研究 [J]. 系统工程与电子技术, 2009, 31(12): 307??3012. |
[2] | ZHANG Hongda, WANG Xiaodan, HAN Jun, et al. Survey of diversity researches on classifier ensembles [J]. Systems Engineering and Electronics, 2009, 31(12): 3007??3012. |
[3] | [4]NASCIMENTO D, COELHO A, CANUTO A. Integrating complementary techniques for promoting diversity in classifier ensembles: a systematic study [J]. Neurocomputing, 2014, 138: 347??357. |
[4] | [7]HAGHIGHI M S, VAHEDIAN A, YAZDI H S. Creating and measuring diversity in multiple classifier systems using support vector data description [J]. Applied Soft Computing, 2011, 11(8): 4931??4942. |
[5] | [8]KRAWCZYK B, WOZNIAK M. Diversity measures for one??class classifier ensembles [J]. Neurocomputing, 2004, 126: 36??44. |
[6] | [17]LIANG J, CHIN K, DANG C. A new method for measuring uncertainty and fuzziness in rough set theory [J]. International Journal of General Systems, 2002, 31(4): 331??342. |
[7] | [5]KUNCHEVA L I, WHITAKER C J. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy [J]. Machine Learning, 2003, 51: 181??207. |
[8] | [6]WINDEATT T. Diversity measures for multiple classifier system analysis and design [J]. Information Fusion, 2005, 6(1): 21??36. |
[9] | [9]YIN X C, HUANG K Z, HAO H W, et al. A novel classifier ensemble method with sparsity and diversity [J]. Neurocomputing, 2014, 134: 214??221. |
[10] | [10]BI Y X. The impact of diversity on the accuracy of evidential classifier ensembles [J]. International Journal of Approximate Reasoning, 2012, 53(4): 584??607. |
[11] | [11]AKSELA M, LAAKSONEN J. Using diversity of errors for selecting members of a committee classifier [J]. Pattern Recognition, 2006, 39(4): 608??623. |
[12] | [1]KUNCHEVA L I, SKURICHINA M, DUIN R P W. An experimental study on diversity for bagging and boosting with linear classifiers [J]. Information Fusion, 2002, 3(4): 245??258. |
[13] | [2]BROWN G, KUNCHEVA L I. “Good” and “bad” diversity in majority vote ensembles [C]∥Proceedings of International Conference on Multiple Classifier Systems. Berlin, Germany: Springer, 2010: 124??133. |
[14] | [13]杨春, 殷绪成, 郝红卫, 等. 基于差异性的分类器集成有效性分析及优化集成 [J]. 自动化学报, 2014, 40(4): 660??674. |
[15] | YANG Chun, YIN Xucheng, HAO Hongwei, et al. Classifier ensemble with diversity: effectiveness analysis and ensemble optimization [J]. Acta Automatica Sinica, 2014, 40(4): 660??674. |
[16] | [14]杨长盛, 陶亮, 曹振田, 等. 基于成对差异性度量的选择性集成方法 [J]. 模式识别与人工智能, 2010, 23(4): 565??571. |
[17] | YANG Changsheng, TAO Liang, CAO Zhentian, et al. Pairwise diversity measures based selective ensemble method [J]. PR&AI, 2010, 23(4): 565??571. |
[18] | [15]谷雨. 分类器集成中的多样性度量 [J]. 云南民族大学学报: 自然科学版, 2012, 21(1): 59??65. |
[19] | GU Yu. Measure diversity classifier ensemble [J]. Journal of Yunnan National University: Natural Science, 2012, 21(1): 59??65. |
[20] | [12]RASHEED S, STASHUK D W, KAMEL M S. Diversity??based combination of non??parametric classifiers for EMG signal decomposition [J]. Pattern Anal Applic, 2008, 11(3/4): 385??408. |
[21] | [16]LIU W Y, WU Z H, PAN G. An entropy??based diversity measure for classifier combining and its application to face classifier ensemble thinning [C]∥Proceedings of International Conference on Sinobiometrics. Berlin, Germany: Springer, 2004: 118??124. |
[22] | [18]YU D, HU Q, WU C. Uncertainty measures for fuzzy relations and their applications [J]. Applied Soft Computing, 2007, 7(3): 1135??1143. |
[23] | [19]ZHAO J, ZHANG Z, HAN C, et al. Complement information entropy for uncertainty measure in fuzzy rough set and its application [J]. Soft Computing, 2015, 19(7): 1997??2010. |
[24] | [20]BLAKE C L. MERZ C L. UCI repository of machine learning databases [EB/OL]. (2007??10??12) [2015??05??08]. http:∥www??ics??uci??edu/~mlearn/MLRepository??html. |