全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

面向能耗优化的云渲染系统任务调度策略
A Task Scheduling Strategy With Energy Optimization for Cloud Rendering Systems

DOI: 10.7652/xjtuxb201602001

Keywords: 能耗模型,任务调度,云渲染
energy consumption model
,task scheduling,cloud rendering

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对云渲染系统中由于渲染节点与任务不匹配调度而带来的能耗浪费问题,提出一种通过任务调度方式来优化系统能耗的策略。为了形式化描述系统的整体能耗,综合考虑节点空闲能耗和任务运行能耗,建立渲染任务能耗模型;以降低系统总体能耗为优化目标,根据渲染任务之间无依赖性的特点,将任务调度序列拆分成子序列,利用模拟退火思想,通过优化子序列任务调度提高节点利用率、减少节点空闲能耗,以此降低系统全局任务的能耗;采用矩阵存储子序列任务的能耗,以空间换时间的方式降低策略的时间复杂度。实验结果表明:该策略在多渲染作业环境中能耗优化效果比先进先出算法提升了43.4%,比能耗感知的调度算法提升了6.7%,能够有效降低云渲染系统的总体能耗,同时具有良好的扩展性,使云渲染系统的能耗效率和整体性能得到提升。
A task scheduling strategy with optimized energy consumption for cloud rendering systems is proposed to solve the problem that the mismatching task scheduling on render nodes causes a great waste of energy consumption. A rendering task energy consumption model is presented to describe formally the overall energy consumption of a system and takes both the idle and the task running energy consumptions of each node into account. The optimization object is to reduce the overall energy consumption of the system, and the strategy divides the task scheduling sequence into subsequences based on the non??dependence characteristic among rendering tasks. The simulated annealing ideology is used to optimize the scheduling of the subsequence tasks, to improve the utilization ratio of the nodes and to reduce the idle energy consumption of nodes so that the energy consumption for the overall system is reduced. Moreover, the strategy adopts a way of space in time to reduce the time complexity by using a matrix to store the energy of subsequence tasks. Experimental results and comparisons with the FIFO algorithm and EMRSA (energy??aware MapReduce scheduling) algorithm in a multi jobs measurement show that the energy optimization performance of the proposed strategy has improved about 43.4% and 6.7%, respectively, that is, the proposed strategy effectively reduces the overall energy consumption for cloud rendering systems. Moreover, the proposed strategy possesses better expansibility. It can be concluded that the proposed strategy can improve the energy efficiency and overall performance of cloud rendering systems

References

[1]  [1]BAHARON M R, SHI Q, LLEWELLYN??JONES D, et al. Secure rendering process in cloud computing [C]∥Proceedings of the 2013 11th Annual International Conference on Privacy, Security and Trust. Piscataway, NJ, USA: IEEE, 2013: 82??87.
[2]  [8]PIETRI I, SAKELLARIOU R. Energy??aware workflow scheduling using frequency scaling [C]∥Proceedings of the 2014 43rd International Conference on Parallel Processing Workshops. Piscataway, NJ, USA: IEEE, 2014: 104??113.
[3]  ZHU Xiaomin, HE Chuan, WANG Jianjiang, et al. An elastic energy??aware scheduling strategy for heterogeneous computing systems [J]. Chinese Journal of Computers, 2012, 35(6): 1313??1326.
[4]  [10]谭一鸣, 曾国荪, 王伟. 随机任务在云计算平台中能耗的优化管理方法 [J]. 软件学报, 2012, 23(2): 266??278.
[5]  [6]ZONG Ziliang, MANZANARES A, RUAN Xiaojun, et al. EAD and PEBD: two energy??aware duplication scheduling algorithms for parallel tasks on homogeneous clusters [J]. IEEE Transactions on Computers, 2011, 60(3): 360??374.
[6]  [7]MAHESHWARI N, NANSURI R, VARMA V. Dynamic energy efficient data placement and cluster reconfiguration algorithm for MapReduce framework [J]. Future Generation Computer System, 2012, 28(1): 119??127.
[7]  TAN Yiming, ZENG Guosun, WANG Wei. Policy of energy optimal management for cloud computing platform with stochastic tasks [J]. Journal of Software, 2012, 23(2): 266??278.
[8]  [11]MASHAYEKHY L, NEJAD M M, GROSU D, et al. Energy??aware scheduling of MapReduce jobs [C]∥Proceedings of the IEEE International Congress on Big Data. Piscataway, NJ, USA: IEEE, 2014: 32??39.
[9]  [2]罗亮, 吴文峻, 张飞. 面向云计算数据中心的能耗建模方法 [J]. 软件学报, 2014, 25(7): 1371??1387.
[10]  LUO Liang, WU Wenjun, ZHANG Fei. Energy modeling based on cloud data center [J]. Journal of Software, 2014, 25(7): 1371??1387.
[11]  [3]LI Chao, ZHOU Ruijin, LI Tao. Enabling distributed generation powered sustainable high??performance data center [C]∥Proceedings of the 19th IEEE International Symposium on High Performance Computer Architecture. Piscataway, NJ, USA: IEEE, 2013: 35??46.
[12]  [4]LI Keqin. Energy efficient scheduling of parallel tasks on multiprocessor computers [J]. Journal of Supercomputing, 2012, 60(2): 223??247.
[13]  [5]LEE Y C, ZOMAYA A Y. Energy efficient utilization of resources in cloud computing system [J]. Journal of Supercomputing, 2012, 60(2): 268??280.
[14]  [9]朱晓敏, 贺川, 王建江, 等. 异构计算系统中弹性节能调度策略研究 [J]. 计算机学报, 2012, 35(6): 1313??1326.
[15]  [12]GUZEK M, PECERO J E, DORRONSORO B, et al. Multi??objective evolutionary algorithms for energy??aware scheduling on distributed computing systems [J]. Applied Soft Computing, 2014, 24: 432??446.
[16]  [13]SOUSA T, MORAIS H, VALE Z, et al. Intelligent energy resource management considering vehicle??to??grid: a simulated annealing approach [J]. IEEE Transactions on Smart Grid, 2012, 3(1): 535??542.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133