|
- 2017
500 kV SF6电流互感器电容屏缺陷下的 气体分解特性
|
Abstract:
为了研究SF6电流互感器(CT)内存在电容屏缺陷时的气体放电分解特性,分别在实验室内的模拟平台和500 kV实体CT内开展了试验研究。在实验室模拟罐体内建立了场强方向平行于电容屏表面的缺陷模型1#和垂直于其表面的缺陷模型2#,在保持相同放电量的条件下对两种模型进行了SF6气体放电分解试验,结果显示:两种电容屏缺陷下的典型气体分解产物包括CF4、SO2F2、CS2、SO2和S2OF105种;在相同时间下,3种含硫氧化物的体积分数从大到小依次为φ(SO2)、φ(S2OF10)、φ(SO2F2),产物浓度随加压时间均呈现近线性增长趋势;CF4和CS2是涉及绝缘材料放电特有的分解产物,前者浓度远高于后者;对绝缘材料进行XPS元素能谱分析,得出C元素来源于绝缘材料;此外,放电量相近时模型2#下的分解产物浓度低于模型1#。最后,在500 kV SF6式实体CT内设置了电容屏沿面及屏间短路复合缺陷,结果表明,实体缺陷下的分解产物种类和变化趋势与同类型的实验室模拟缺陷结果一致。在实验室内模拟缺陷进行气体分解特性的研究对实际应用具有指导意义。
To reveal the gas decomposition characteristics under capacitive screen defects in SF6 current transformer, experiments were respectively carried out in laboratory platform and for 500 kV CT samples. Two discharge models of capacitive screen defects with the electric field parallel or perpendicular to the insulator surface were established in the laboratory platform. The results show that SF6 decomposition products include CF4, SO2F2, CS2, SO2 and S2OF10, and the concentrations of SO2, S2OF10 and SO2F2 decrease in turn. And their concentrations rise nearly linearly with time. CF4 and CS2 are typical decomposition products under the discharge involving insulators and the concentration of the former is much higher than that of the latter. The XPS analysis indicates that C element is derived from the insulating materials. With the same discharge quantity, the decomposition products concentrations of model 2# are significantly less than that of model 1#. The compound defects including creeping discharge and interturn short circuit of capacitance screen were set in a 500 kV CT, and it is found that the type and changing trend of decomposition products coincide with the results obtained in laboratory platform
[1] | DU Xiaoping, LI Tao, LI Jinghua, et al. Analysis on flashover fault of 220 kV gas insulated switchgear and corresponding measures [J]. Insulating Materials, 2009, 42(3): 67??72. |
[2] | [2]汲胜昌, 钟理鹏, 刘凯, 等. SF6放电分解组分分析及其应用的研究现状与发展 [J]. 中国电机工程学报, 2015, 35(9): 2318??2332. |
[3] | TANG Ju, HU Yao, YAO Qiang, et al. Decomposition characteristics of SF6 under partial discharge at different gas pressures [J]. High Voltage Engineering, 2014, 40(8): 2257??2263. |
[4] | [10]周文俊, 乔胜亚, 李丽, 等. GIS中盆式绝缘子沿面放电的新特征气体CS2 [J]. 高电压技术, 2015, 41(3): 848??856. |
[5] | ZHOU Wenjun, QIAO Shengya, LI Li, et al. Creeping discharge monitoring of epoxy spacers in GIS using a new target gas CS2 [J]. High Voltage Engineering, 2015, 41(3): 848??856. |
[6] | [3]颜湘莲, 王承玉, 杨韧, 等. 应用SF6气体分解产物的高压开关设备故障诊断 [J]. 电网技术, 2011, 35(12): 118??123. |
[7] | YAN Xianglian, WANG Chengyu, YANG Ren, et al. Fault diagnosis of high voltage switchgears by decomposition products of SF6 [J]. Power System Technology, 2011, 35(12): 118??123. |
[8] | [4]DERDOURI A, CASANOVAS J. Spark decomposition of SF6/H2O mixtures [J]. IEEE Transactions on Electrical Insulation, 1989, 24(6): 1147??1157. |
[9] | [5]CHU F Y. SF6 decomposition in gas??insulated equipment [J]. IEEE Transactions on Electrical Insulation, 1986, 21(5): 693??725. |
[10] | [6]VAN BRUNT R J, HERRON J T. Fundamental processes of SF6 decomposition and oxidation in glow and corona discharges [J]. IEEE Transactions on Electrical Insulation, 1990, 25(1): 75??94. |
[11] | [7]马虹斌, 邱毓昌, 孟玉婵, 等. SF6??CO2混合气体火花放电分解产物的气相色谱分析 [J]. 高压电器, 1995(3): 16??20. |
[12] | MA Hongbin, QIU Yuchang, MENG Yuchan, et al. Gas chromatographic analysis to decomposition products of gaseous mixture of SF6 and CO2 under spark discharge [J]. High Voltage Apparatus, 1995(3): 16??20. |
[13] | [8]唐炬, 陈长杰, 张晓星, 等. 微氧对SF6局部放电分解特征组份的影响 [J]. 高电压技术, 2011, 37(1): 8??14. |
[14] | TANG Ju, CHEN Changjie, ZHANG Xiaoxing, et al. Influence of trace??level O2 on SF6 decomposition characteristics under partial discharge [J]. High Voltage Engineering, 2011, 37(1): 8??14. |
[15] | [9]唐炬, 胡瑶, 姚强, 等. 不同气压下SF6的局部放电分解特性 [J]. 高电压技术, 2014, 40(8): 2257??2263. |
[16] | TANG Shaoyu. Analysis to structure and technology of SF6 insulation current transformer [J]. Transformer, 2001, 38(3): 5??8. |
[17] | [12]IEC. Guidelines for the checking and treatment of sulfur hexafluoride taken from electrical equipment and specification for its re??use: IEC 60480??2004 [S]. Geneva, Switzerland: IEC, 2005. |
[18] | [14]WANG Yuanyuan, JI Shengchang, LI Jinyu, et al. Investigations on discharge and decomposition characteristics of SF6 under various experimental conditions [J]. High Voltage Engineering, 2013, 39(8): 1952??1959 |
[19] | JI Shengchang, ZHONG Lipeng, LIU Kai, et al. Research status and development of SF6 decomposition components analysis under discharge and its application [J]. Proceeding of the CSEE, 2015, 35(9): 2318??2332. |
[20] | [17]胡瑶. 针?舶迦毕菽P拖?SF6的电晕放电分解特性及其影响因素研究 [D]. 重庆: 重庆大学, 2014: 3??4. |
[21] | [1]杜晓平, 李涛, 李景华, 等. 气体绝缘组合电器(GIS)事故原因分析及建议 [J]. 绝缘材料, 2009, 42(3): 67??72. |
[22] | [11]唐绍予. 浅析高压SF6电流互感器的结构与工艺 [J]. 变压器, 2001, 38(3): 5??8. |
[23] | [13]VAN BRUNT R J, HERRON J T. Plasma chemical model for decomposition of SF6 in a negative glow corona discharge [J]. Physica Scripta, 1994, 53(9): 9??18. |
[24] | [15]钟理鹏, 汲胜昌, 刘凯, 等. 低微水的体积分数对SF6局部放电及分解特性的影响 [J]. 西安交通大学学报, 2016, 50(3): 112??119. |
[25] | ZHONG Lipeng, JI Shengchang, LIU Kai, et al. Influence of H2O on SF6 discharge and decomposition characteristics under low moisture conditions [J]. Journal of Xi’an Jiaotong University, 2016, 50(3): 112??119. |
[26] | [16]BRAUN J M, CHU F Y. Novel low??cost SF6 arcing byproduct detectors for field use in gas??insulated switchgear [J]. IEEE Transactions on Power Delivery, 1986, 1(2): 81??86. |