全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

一种5G网络低时延资源调度算法
A Resource Scheduling Algorithm with Low Latency for 5G Networks Based on Effective Hybrid Genetic Algorithm and Tabu Search

DOI: 10.7652/xjtuxb201804017

Keywords: 5G网络,网络功能虚拟化,调度,带宽分配,遗传算法,禁忌搜索
5G network
,network function virtualization,scheduling,bandwidth allocation,genetic algorithm,tabu search

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对现有资源调度算法难以满足5G低时延业务需求的现状,提出了一种基于联合遗传和禁忌搜索算法的资源调度(GATS)算法。首先利用整数线性规划建立了虚拟链路的动态带宽分配策略,然后在传统柔性车间调度模型的基础上引入了数据流量在虚拟链路中的传输时延,建立了相应的5G网络资源调度模型。为了求解这一调度模型,设计了采用联合遗传和禁忌搜索算法的启发式调度算法,该算法通过在遗传算法寻优过程中引入禁忌搜索,平衡全局搜索和局部搜索能力,有效解决了遗传算法早熟的问题,而且能够获得更好的调度方案。仿真实验表明,与GA??BA算法相比,GATS算法将服务完成时间减少了17%,不仅满足了5G低时延业务的需求,而且提高了用户体验和移动运营商的收益。
A resource scheduling algorithm based on hybrid genetic algorithm and tabu search (named GATS) is proposed to solve the problem that the existing schedule methods are difficult to meet the requirement of the mobile communication with low latency. First, a dynamic bandwidth allocation policy of virtual links is established using an integer linear programming. Then, the transmission delay of data traffic in virtual links is introduced based on a traditional flexible job shop scheduling model, and the corresponding resource scheduling model for 5G is established. Owing to the complexity of the scheduling problem, the resource scheduling algorithm based on hybrid genetic algorithm and tabu search is developed for solving the problem efficiently. The algorithm introduces tabu search in optimization process of the genetic algorithm to balance capabilities of global and local searches, solves the problem of premature convergence of the genetic algorithm, and obtains better scheduling solutions. Simulation results show that the GATS algorithm outperforms the GA??BA algorithm in reducing the scheduling makespan by 17%, and caters to 5G service with stringent delay requirements, thereby increases users’ experience and operators’ revenues

References

[1]  [2]MARTINI B, PAGANELLI F, CAPPANERA P, et al. Latency??aware composition of virtual functions in 5G [C]∥IEEE Conference on Network Softwarization: Software??Defined Infrastructures for Networks, Clouds, IoT and Services, NETSOFT 2015. Piscataway, NJ, USA: IEEE, 2015: 1??6.
[2]  [11]LI X, QIAN C. Low??complexity multi??resource packet scheduling for network function virtualization [C]∥Proceedings of 2015 IEEE Conference on Computer Communications. Piscataway, NJ, USA: IEEE, 2015: 1400??1408.
[3]  [16]GUO J, LIU F, HUANG X, et al. On efficient bandwidth allocation for traffic variability in datacenters [C]∥ Proceedings of IEEE INFOCOM. Piscataway, NJ, USA: IEEE, 2014: 1572??1580.
[4]  [6]CHENG G, CHEN H, HU H, et al. Enabling network function combination via service chain instantiation [J]. Computer Networks, 2015, 92: 396??407.
[5]  [7]HERRERA J G, BOTERO J F. Resource allocation in NFV: A comprehensive survey [J]. IEEE Transactions on Network and Service Management, 2016, 13(3): 518??532.
[6]  [8]OSSEIRAN A, BOCCARDI F, BRAUN V, et al. Scenarios for 5G mobile and wireless communications: the vision of the METIS project [J]. IEEE Communications Magazine, 2014, 52(5): 26??35.
[7]  [3]ABDELWAHAB S, HAMDAOUI B, GUIZANI M, et al. Network function virtualization in 5G [J]. IEEE Communications Magazine, 2016, 54(4): 84??91.
[8]  [4]刘彩霞, 卢干强, 汤红波, 等. 一种基于Viterbi算法的虚拟网络功能自适应部署方法 [J]. 电子与信息学报, 2016, 38(11): 2922??2930.
[9]  LIU Caixia, LU Ganqiang, TANG Hongbo, et al. Adaptive deployment method for virtualized network function based on Viterbi algorithm [J]. Journal of Electronics & Information Technology, 2016, 38(11): 2922??2930.
[10]  [5]KREUTZ D, RAMOS F M V, ESTEVES P, et al. Software??defined networking: A comprehensive survey [J]. Proceedings of the IEEE, 2014, 103(1): 10??13.
[11]  [9]袁泉, 汤红波, 黄开枝, 等. 基于Q??learning算法的vEPC虚拟网络功能部署方法 [J]. 通信学报, 2017, 38(8): 172??182
[12]  YUAN Quan, TANG Hongbo, HUANG Kaizhi, et al. Deployment method for vEPC virtualized network function via Q??learning [J]. Journal on Communications, 2017, 38(8): 172??182.
[13]  [10]RIERA J F, ESCALONA E, BATALLE J, et al. Virtual network function scheduling: Concept and challenges [C]∥2014 International Conference on Smart Communications in Network Technologies. Piscataway, NJ, USA: IEEE, 2014: 6867768.
[14]  [12]LUIZELLI M C, BAYS L R, BURIOL L S, et al. Piecing together the NFV provisioning puzzle: Efficient placement and chaining of virtual network functions [C]∥Proceedings of 2015 IFIP/IEEE International Symposium on Integrated Network Management. Piscataway, NJ, USA: IEEE, 2015: 98??106.
[15]  [13]QU L, ASSI C, SHABAN K. Delay??aware scheduling and resource optimization with network function virtualization [J]. IEEE Transactions on Communications, 2016, 64(9): 3746??3758.
[16]  [14]MIJUMBI R, SERRAT J, GORRICHO J L, et al. Network function virtualization: State??of??the??art and research challenges [J]. IEEE Communications on Surveys & Tutorials, 2016, 18(1): 236??262.
[17]  [15]GUO J, LIU F, LUI J, et al. Fair network bandwidth allocation in IaaS datacenters via a cooperative game approach [J]. IEEE/ACM Transactions on Networking, 2016, 24(2): 873??886.
[18]  [1]张平, 陶运铮, 张治. 5G若干关键技术评述 [J]. 通信学报, 2016, 37(7): 15??29.
[19]  ZHANG Ping, TAO Yunzheng, ZHANG Zhi. Survey of several key technologies for 5G [J]. Journal on Communications, 2016, 37(7): 15??29.
[20]  [17]GAMBARDELLA L M, MASTROLILLI M. Effective neighborhood functions for the flexible job shop problem [J]. Journal of Scheduling, 1996, 3(3): 3??20.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133