全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

激光光梯度力消除雾霾的实验研究
Experimental Investigation for Eliminating Haze Particles by Laser Gradient Force

DOI: 10.7652/xjtuxb201810008

Keywords: 雾霾粒子,光梯度力,模拟方法,实验研究
haze particle
,optical gradient force,simulation method,experimental investigation

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用激光光梯度力破坏雾霾粒子的力平衡体系从而加速雾霾沉降的新机理,搭建了模拟动态雾霾的实验舱。通过向悬浮的雾霾粒子辐射激光的方式验证了激光消除雾霾的可行性。大气中的雾霾粒子由于受到曳引阻力、范德瓦尔斯斥力、旋转升力等的作用,处于稳定的网状力平衡状态。激光与雾霾粒子的相互作用过程即为利用激光光梯度力俘获电介质粒子的过程。当激光产生的光梯度力打破雾霾粒子所处的平衡状态时,激光对雾霾粒子的捕获能力大于大气的悬浮能力,雾霾粒子便会脱离原有的力平衡体系而坠落。实验数据表明,功率为2.6 mW的氦氖激光器产生的光梯度力足以打破直径分别为0.3、0.5和1.0 μm的雾霾粒子原有的力平衡体系。激光开启时,实验舱内粒子浓度急剧衰减,衰减速率明显高于粒子的自然衰减速率,成功达到了加速粒子沉降的目的。实验结果还表明,烟雾粒子粒径越大沉降的效果越明显。这种治理雾霾的新机理对净化大气、消除工厂粉尘以及对人们的健康生活、经济持续发展等具有重要意义。
Following the new mechanism of eliminating haze particles by optical gradient force, a test chamber for simulating dynamic haze is constructed. The feasibility of eliminating haze is verified by a laser beam irradiating suspended haze. The forces including air drag force, van der Waals repulsion force and rotary lift force keep the haze particles staying in a stable force balance status in the atmosphere. The interaction between laser and haze particles explains the process of optical gradient force trapping the dielectric particles. When the optical trapping force breaks the balance status of the haze particles, the haze particles are separated from the original force balance system then fall. The experimental results show that the optical gradient force generated by a 2.6 mW He??Ne laser is sufficient to break the original force balance system of haze particles with diameter of 0.3, 0.5 or 1.0 μm. When laser is once applied, the concentration of haze particles declines rapidly, and the decay rate is much faster than the natural decay rate. Thus, the purpose of eliminating haze particles is successfully achieved. In addition, the close relationship between the particle size and elimination of haze is also discussed. It is undoubted that the proposed way of eliminating haze particles can effectively purify air and reduce factory dust to exhibit the great significance for both healthy life and sustainable economic development

References

[1]  [6]王黎明, 刘动, 陈枫林, 等. 雾霾模拟方法及其装置研究 [J]. 高电压技术, 2014, 40(11): 3297??3304.
[2]  [18]李忠明, 张镇西. 光场力的电磁理论分析 [J]. 量子电子学报, 2007, 24(2): 211??215.
[3]  LI Zhongming, ZHANG Zhenxi. Electromagnetic theory of optical forces [J]. Chinese Journal of Quantum Electronics, 2007, 24(2): 211??215.
[4]  [19]王建辉, 赵悦菊, 孙伟, 等. 人工模拟雾霾实验及其装置 [J]. 环境工程学报, 2017, 11(9): 5130??5137.
[5]  [20]MA J Z, XU X B, ZHAO C S, et al. A review of atmospheric chemistry research in China: photochemical smog, haze pollution, and gas??aerosol interactions [J]. Advances in Atmospheric Sciences, 2012, 29(5): 1006??1025.
[6]  [21]常清, 杨复沫, 李兴华, 等. 北京冬季雾霾天气下颗粒物及其化学组分的粒径分布特征研究 [J]. 环境科学学报, 2015, 35(2): 363??370.
[7]  [1]马丽梅, 张晓. 中国雾霾污染的空间效应及经济、能源结构影响 [J]. 中国工业经济, 2014, 31(4): 19??31.
[8]  [16]BRADSHAW D S, ANDREWS D L. Manipulating particles with light: radiation and gradient forces [J]. European Journal of Physics, 2017, 38(3): 034008.
[9]  [17]HALLOCK A J, REDMOND P L, BRUS L E. Optical forces between metallic particles [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(5): 1280??1284.
[10]  [23]王亚杰, 强天伟, 孙婧. 香烟烟雾中颗粒物粒径的分布情况 [J]. 洁净与空调技术, 2016(1): 81??85.
[11]  MA Limei, ZHANG Xiao. The spatial effect of China’s haze pollution and the impact from economic change and energy structure [J]. China Industry Economics, 2014, 31(4): 19??31.
[12]  [2]CHAMEIDES W L, YU H, LIN S C, et al. Case study of the effects of atmospheric aerosols and regional haze on agriculture: an opportunity to enhance crop yields in China through emission controls? [J]. Proceedings of the National Academy of Science of the United States of America, 1999, 96(24): 13626??13633.
[13]  [3]SHAKYA K M, PELTIER R E, SHRESTHA H, et al. Measurements of TSP, PM10, PM2??5, BC, and PM chemical composition from an urban residential location in Nepal [J]. Atmospheric Pollution Research, 2017, 8(6): 1123??1131.
[14]  [4]姚青, 蔡子颖, 韩素芹, 等. 天津冬季雾霾天气下颗粒物质量浓度分布与光学特性 [J]. 环境科学研究, 2014, 27(5): 462??469.
[15]  YAO Qing, CAI Ziying, HAN Suqin, et al. PM2??5 pollution characteristics and aerosol optical properties during fog??haze episodes in Tianjin [J]. Research of Environmental Sciences, 2014, 27(5): 462??469.
[16]  [5]张永燕, 吴九汇, 曾涛, 等. 利用激光光梯度力消除气溶胶雾霾粒子的机理研究 [J]. 物理学报, 2016, 65(7): 074203.
[17]  ZHANG Yongyan, WU Jiuhui, ZENG Tao, et al. Mechanism of eliminating the aerosol haze particles by using laser gradient force [J]. Acta Physica Sinica, 2016, 65(7): 074203.
[18]  WANG Liming, LIU Dong, CHEN Fenglin, at al. Simulation method and testing apparatus of fog??haze [J]. High Voltage Engineering, 2014, 40(11): 3297??3304.
[19]  [7]ASHKIN A. Acceleration and trapping of particles by radiation pressure [J]. Physical Review Letters, 1970, 24(4): 156??159.
[20]  [8]ASHKIN A. Forces of a single??beam gradient force on a dielectric sphere in the ray of optic regime [J]. Biophysical Journal, 1992, 61(2): 569??582.
[21]  [9]VAN M J, WUITE G J, HELLER I. Introduction to optical tweezers: background, system designs, and commercial solutions [J]. Methods in Molecular Biology, 2011, 783: 1??20.
[22]  [10]SVOBODA K, BLOCK S M. Optical trapping of metallic Rayleigh particles [J]. Optics Letters, 1994, 19(13): 930??932.
[23]  [11]KE P C, GU M. Characterization of trapping force on metallic Mie particles [J]. Applied Optics, 1999, 38(1): 160??167.
[24]  [12]GHISLAIN L P, SWITZ N A, WEBB W W. Measurement of small forces using an optical trap [J]. Review of Scientific Instruments, 1994, 65(9): 2762??2768.
[25]  [13]ROHRBACH A, STELZER E H K. Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations [J]. Applied Optics, 2002, 41(13): 2494??2507.
[26]  [14]ALLEN L, PADGETT M J, BABIKER M. The orbital angular momentum of light [J]. Progress in Optics, 1999, 39(1): 291??372.
[27]  [15]CURTIS J E, GRIER D G. Structure of optical vortices [J]. Physical Review Letters, 2003, 90(13): 133901.
[28]  WANG Jianhui, ZHAO Yueju, SUN Wei, et al. Experiment and its device for artificial simulated fog??haze environment [J]. Chinese Journal of Environmental Engineering, 2017, 11(9): 5130??5137.
[29]  CHANG Qing, YANG Fumo, LI Xinghua, et al. Characteristics of mass and chemical species size distributions of particulate matter during haze pollution in the winter in Beijing [J]. Acta Scientiae Circumstantiae, 2015, 35(2): 363??370.
[30]  [22]周羽生, 罗屿, 赵纯, 等. 人工气候室雾霾模拟方法及装置 [J]. 高电压技术, 2017, 43(3): 909??914.
[31]  ZHOU Yusheng, LUO Yu, ZHAO Chun, et al. Haze??fog simulation method and device in the artificial climate chamber [J]. High Voltage Engineering, 2017, 43(3): 909??914.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133