全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

使用新预测模型的动态多目标优化算法
A Dynamic Multiobjective Optimization Algorithm with a New Prediction Model

DOI: 10.7652/xjtuxb201810002

Keywords: 动态多目标优化,进化算法,卡尔曼滤波,预测模型
dynamic multiobjective optimization
,evolutionary algorithm,Kalman filter,prediction model

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对实际应用中动态多目标优化算法对快速变化的最优解集跟踪能力不强的问题,提出了一种使用结合中心点预测值和垂直扰动分量的新预测模型的动态多目标优化算法。首先,计算变化前最优解集的中心点作为预测对象,改变了通常使用全部解进行预测的方式,提升了算法效率;其次,结合算法迭代的历史信息,选取位置、速度、加速度作为预测的状态向量,保证了算法对大多数情形下解集整体变化的跟踪预测能力;最后,为预测的新解添加了垂直于预测变化方向的超平面随机扰动,增强了解集的多样性,进而提升了算法收敛速度。实验结果表明,该算法在75%的测试函数集上的性能优于其他3种经典的动态多目标优化算法,其耗时较经典的基于卡尔曼滤波预测的动态多目标优化算法平均减少了39%。
A new dynamic multiobjective optimization algorithm is proposed to solve the problem that the existing dynamic multiobjective optimization algorithms have poor ability to track the rapid changing optimal solutions for practical applications, and the algorithm uses a new prediction model that combines the prediction value of central point and the vertical disturbance component. First, the central point of the optimal solution set before change is calculated as a prediction object, which changes the way that all solutions are usually used for prediction and improves the efficiency of the algorithm. Second, the history information of the algorithmic iterations is combined to select the location, velocity and acceleration as a state vector of prediction. The tracking ability for change in the solution set is ensured in most circumstances. At last, a hyperplane random disturbance that is perpendicular to the predicted direction of change is added to the predicted new solution to enhance the diversity of the knowledge set, and the convergence speed of the algorithm is improved. Experimental results show that the proposed algorithm is superior to the other 3 state??of??the??art dynamic multiobjective evolutionary algorithms in 75% test cases, and the run time of the algorithm is 39% lower than those of dynamic multiobjective optimization algorithms based on Kalman filter

References

[1]  [2]MARICHELVAM M K, PRABAHARAN T, YANG X S. A discrete firefly algorithm for the multi??objective hybrid flowshop scheduling problems [J]. IEEE Transactions on Evolutionary Computation, 2014, 18(2): 301??305.
[2]  LIU Min, ZENG Wenhua, LIU Yuzhen. Bunchy memo method for dynamic evolutionary multi??objective optimization [J]. Computer Science, 2016, 43(12): 241??247.
[3]  [10]JIANG S, YANG S. A steady??state and generational evolutionary algorithm for dynamic multiobjective optimization [J]. IEEE Transactions on Evolutionary Computation, 2017, 21(1): 65??82.
[4]  [22]FARINA M, DEB K, AMATO P. Dynamic multiobjective optimization problems: test cases, approximations, and applications [J]. IEEE Transactions on Evolutionary Computation, 2004, 8(5): 425??442.
[5]  [23]GOH C K, TAN K C. A competitive??cooperative coevolutionary paradigm for dynamic multiobjective optimization [J]. IEEE Transactions on Evolutionary Computation, 2009, 13(1): 103??127.
[6]  [24]BOSMAN P A N, THIERENS D. The balance between proximity and diversity in multiobjective evolutionary algorithms [J]. IEEE Transactions on Evolutionary Computation, 2003, 7(2): 174??188.
[7]  [8]张世文, 李智勇, 陈少淼, 等. 基于生态策略的动态多目标优化算法 [J]. 计算机研究与发展, 2014, 51(6): 1313??1330.
[8]  [12]陈美蓉, 郭一楠, 巩敦卫, 等. 一类新型动态多目标鲁棒进化优化方法 [J]. 自动化学报, 2017(11): 2014 ??2032.
[9]  CHEN Meirong, GUO Yinan, GONG Dunwei, et al. A novel dynamic multi??objective robust evolutionary optimization method [J]. Acta Automatica Sinica, 2017(11): 2014??2032.
[10]  [13]ZHOU A, JIN Y, ZHANG Q, et al. Prediction??based population re??initialization for evolutionary dynamic multi??objective optimization [C]∥International Conference on Evolutionary Multi??Criterion Optimization. Berlin, Germany: Springer??Verlag, 2007: 832??846.
[11]  [14]COSTA E. Improving prediction in evolutionary algorithms for dynamic environments [C]∥Conference on Genetic and Evolutionary Computation. New York, USA: ACM, 2009: 875??882.
[12]  [15]MURUGANANTHAM A, ZHAO Y, GEE S B, et al. Dynamic multiobjective optimization using evolutionary algorithm with Kalman filter [J]. Procedia Computer Science, 2013, 24(1): 66??75.
[13]  [16]YAN J, YUAN D, XING X, et al. Kalman filtering parameter optimization techniques based on genetic algorithm [C]∥IEEE International Conference on Automation and Logistics. Piscataway, NJ, USA: IEEE, 2008: 1717??1720.
[14]  [17]DEB K, KALYANMOY D. Multi??objective optimization using evolutionary algorithms [M]. New York, USA: John Wiley & Sons, Inc., 2001: 1??20.
[15]  [18]ANUPAM T, DIPTI S, KRISHNENDU S, et al. A survey of multiobjective evolutionary algorithms based on decomposition [J]. IEEE Transactions on Evolutionary Computation, 2017, 21(3): 440??462.
[16]  [19]WELCH G, BISHOP G. An introduction to the Kalman filter [M]. Chapel Hill, NC, USA: University of North Carolina at Chapel Hill, 2001: 1??16.
[17]  [20]DEB K, UDAYA B R N, KARTHIK S. Dynamic multi??objective optimization and decision??making using modified NSGA??II: a case study on hydro??thermal power scheduling [M]∥Lecture Notes in Computer Science: Vol 4403. Heidelberg, Germany: Springer Verlag, 2007: 803??817.
[18]  [21]ZHOU A, JIN Y, ZHANG Q. A population prediction strategy for evolutionary dynamic multiobjective optimization [J]. IEEE Transactions on Cybernetics, 2013, 44(1): 40??53.
[19]  [1]NGUYEN S, ZHANG M, JOHNSTON M, et al. Automatic design of scheduling policies for dynamic multi??objective job shop scheduling via cooperative coevolution genetic programming [J]. IEEE Transactions on Evolutionary Computation, 2014, 18(2): 193??208.
[20]  [3]NGUYEN T T. Continuous dynamic optimisation using evolutionary algorithms [D]. Birmingham, UK: University of Birmingham, 2011: 161??220.
[21]  [4]GEE S B, TAN K C, ALIPPI C. Solving multiobjective optimization problems in unknown dynamic environments: an inverse modeling approach [J]. IEEE Transactions on Cybernetics, 2017, 47(12): 4223??4234.
[22]  [5]MORRISON R W. Designing evolutionary algorithms for dynamic environments [M]. Berlin, Germany: Springer??Verlag, 2003: 25??69.
[23]  [6]RIEKERT M, MALAN K M, ENGELBRECT A P. Adaptive genetic programming for dynamic classification problems [C]∥IEEE Congress on Evolutionary Computation. Piscataway, NJ, USA: IEEE, 2009: 674??681.
[24]  [7]WOLDESENBET Y G, YEN G G. Dynamic evolutionary algorithm with variable relocation [J]. IEEE Transactions on Evolutionary Computation, 2009, 13(3): 500??513.
[25]  ZHANG Shiwen, LI Zhiyong, CHEN Shaomiao, et al. Dynamic multi??objective optimization algorithm based on ecological strategy [J]. Journal of Computer Research and Development, 2014, 51(6): 1313??1330.
[26]  [9]刘敏, 曾文华, 刘玉珍. 动态进化多目标优化中的串式记忆方法 [J]. 计算机科学, 2016, 43(12): 241??247.
[27]  [11]焦儒旺, 曾三友, 李晰, 等. 基于学习的动态多目标方法求解约束优化问题 [J]. 武汉大学学报(理学版), 2017, 63(2): 177??183.
[28]  JIAO Ruwang, ZENG Sanyou, LI Xi, et al. Constrained optimization by solving equivalent dynamic constrained multi??objective based on learning [J]. Journal of Wuhan University(Natural Science Edition), 2017, 63(2): 177??183.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133