|
- 2018
轴芯冷却电主轴热特性分析的 数值模拟与实验研究
|
Abstract:
为了改善高速高精密机床电主轴“外冷内热”的现状,基于电主轴热薄弱点分析,提出了一种轴芯冷却结构及系统;进行了轴芯冷却电主轴热特性实验,并结合热特性有限元数值计算模型研究了转速、负载和冷却油流量对电主轴热特性的影响。实验结果表明:该轴芯冷却结构和系统可显著减小不同转速和负载下电主轴系统内部各部件的温升;与没有轴芯冷却的常规电主轴相比,在轴芯冷却油流量为2.5 L/min时,轴芯和轴承测点温升均减小了50%左右,轴芯轴向热变形减小了50.8%,系统热平衡时间减小了66.7%,从而提高了机床电主轴的加工精度和加工效率;轴芯冷却油流量从1.5 L/min增大到2.5 L/min时,系统热平衡时间减少。
To improve the existing situation of “cool exterior and hot interior” of a motorized spindle for high speed and precision machine tools, a shaft cooling structure and system for motorized spindle was designed based on thermal weak point analysis. A thermal characteristic experiment for a motorized spindle with shaft cooling was carried out, and the effects of rotating speed, load and oil flow rate on the thermal characteristics of the motorized spindle were investigated experimentally combined with the finite element numerical calculation model. The experimental results show that the cooling structure and system can effectively reduce the temperature rise of the motorized spindle internal components under different speed and load conditions. Compared with the conventional spindle without shaft core cooling, when the oil flow rate for shaft core cooling is 2.5 L/min, the temperature rise of the shaft core and the bearing decreases by about 50%, the axial thermal deformation of the shaft decreases by 50.8%, the thermal balance time is shortened by 66.7%. Therefore, this shaft cooling structure can improve the machining accuracy and efficiency of the motorized spindle. When the axial cooling oil flow rate increases from 1.5 L/min to 2.5 L/min, the thermal balance time is reduced
[1] | [3]姜春. 主轴系统水内冷技术的研究 [J]. 制造技术与机床, 1988(12): 15??19. |
[2] | JIANG Chun. Study on the water internal cooling technology of the main shaft system [J]. Manufacturing Technology and Machine Tool, 1988(12): 15??19. |
[3] | DENG Jun, XU Guanghui. Design of high speed motorized spindle using shaft cooling [J]. Equipment Manufacturing Technology, 2010(7): 52??53. |
[4] | [6]康跃然, 史晓军, 高建民. 一种新型轴芯冷却电主轴的热特性分析 [J]. 西安交通大学学报, 2017, 51(1): 13??18. |
[5] | KANG Yueran, SHI Xiaojun, GAO Jianmin. Thermal behavior analysis of a motorized spindle with novel shaft core cooling [J]. Journal of Xi’an Jiaotong University, 2017, 51(1): 13??18. |
[6] | [7]HOLKUP T, CAO H, KOLAR P, et al. Thermo??mechanical model of spindles [J]. CIRP Annals: Manufacturing Technology, 2010, 59(1): 365??368. |
[7] | [8]ABELE E, ALTINTAS Y, BRECHER C. Machine tool spindle units [J]. CIRP Annals: Manufacturing Technology, 2010, 59(2): 781??802. |
[8] | [9]康跃然, 史晓军, 高建民. 多参量耦合的电主轴热特性建模及分析 [J]. 西安交通大学学报, 2016, 50(8): 32??37. |
[9] | [1]OKAFOR A C, ERTEKIN Y M. Derivation of machine tool error models and error compensation procedure for three axes vertical machining center using rigid body kinematics [J]. International Journal of Machine Tools & Manufacture: Design, Research and Application, 2000, 40(8): 1199??1213. |
[10] | [2]CHIEN C H, JANG J Y. 3??D numerical and experimental analysis of a built??in motorized high??speed spindle with helical water cooling channel [J]. Applied Thermal Engineering, 2008, 28(17): 2327??2336. |
[11] | [12]康辉民, 陈小安, 陈文曲, 等. 高速电主轴轴承热分析与实验研究 [J]. 机械强度, 2011, 33(6): 797??802. |
[12] | [13]BOSSMANNS B, TU J F. A power flow model for high speed motorized spindles: heat generation characterization [J]. Journal of Manufacturing Science and Engineering, 2001, 123(3): 494??505. |
[13] | [5]史晓军, 康跃然, 高建民. 一种电主轴轴芯冷却结构及系统中国, CN104108047A [P]. 2014??07??18. |
[14] | KANG Huimin, CHEN Xiao’an, CHEN Wenqu, et al. High speed motorized spindle bearing thermal analysis and experimental research [J]. Journal of Mechanical Strength, 2011, 33(6): 797??802. |
[15] | [4]邓君, 许光辉. 高速电主轴采用轴芯冷却的设计 [J]. 装备制造技术, 2010(7): 52??53. |
[16] | KANG Yueran, SHI Xiaojun, Gao Jianmin. Modeling and analyzing multi??variable coupling thermal characteristics for motorized spindle [J]. Journal of Xi’an Jiaotong University, 2016, 50(8): 32??37. |
[17] | [10]ZHANG J F, FENG P F, WU Z J, et al. Thermal structure design and analysis of a machine tool headstock [J]. Mechanika, 2013, 19(4): 478??485. |
[18] | [11]杨世铭. 传热基础学 [M]. 北京: 高等教育出版社, 2004: 167??176. |