全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

300 MW一次再热亚临界燃煤 发电站系统改进研究
Novel System Design for a 300 MW Single Reheat Subcritical Coal??Fired Power Plant

DOI: 10.7652/xjtuxb201809007

Keywords: 燃煤发电站,热力学分析,技术经济性分析,热容流率,温差夹点,发电效率
coal??fired power plant
,thermodynamic analysis,techno??economic analysis,heat??capacity flow rate,pinch point of temperature difference,power generation efficiency

Full-Text   Cite this paper   Add to My Lib

Abstract:

在传统300 MW一次再热亚临界燃煤发电站的空气预热器中,烟气与空气的换热温差大,导致了较大的损失,并且硫酸蒸汽易在冷端凝结使受热面产生低温腐蚀和堵灰的问题。此外,在回热系统中,汽轮机的抽汽与凝结水在换热时,回热加热器热端处的传热温差大,抽汽的过热度难以利用。针对传统电站的上述不足,提出了一种新型电站设计方案,并对其进行了热力学分析和技术经济性分析。在改进电站中,烟气凝结水预热器(flue gas??condensate preheater,FGCP)替换了传统电站中的空气预热器,省煤器后的烟气全部被用来加热部分凝结水,空气和其余凝结水则由汽轮机的抽汽进行加热,同时,增加1股高压抽汽用于保证热空气达到设计的温度要求。研究结果表明:保持FGCP中凝结水和烟气的热容流率相等,可以消除常规电站内空气预热器中的温差夹点,锅炉排烟温度降至103℃而不会产生低温腐蚀和堵灰;将空气加热器与回热加热器串联布置,优先利用了抽汽的过热热来加热空气,减小了蒸汽和凝结水的传热温差;改进电站的发电效率和净发电效率分别达到了45.34%和44.20%,相较常规电站分别提高了1.2和1.0个百分点;改进电站的动态投资回收期约为4.27a,具有可行性。
For conventional 300 MW single reheat subcritical coal??fired power plants, the heat transfer temperature difference between flue gas and air in the air preheater is large, resulting in a large exergy loss. Moreover, the sulfuric acid vapor easily condenses on the cold side, which causes low??temperature corrosion and ash plugging on the heated surface. In the regenerative system, the heat transfer temperature difference between the extraction steam and the condensate water at the hot end of regenerative heater(RH) is large, and the superheat degree of the extraction steam is difficult to use. To solve these problems, a novel conceptual system design for the conventional power plants is proposed. Thermodynamic analysis and techno??economic analysis of the proposed plant are performed. In the proposed system, air preheater in conventional power plant is completely replaced by flue gas??condensate preheater(FGCP), all the flue gas from the economizer is used to heat partial condensate in FGCP, total air together with the rest of the condensate is preheated by extraction steam, and an extra steam bleed is added to ensure that the air temperature meets the design requirement. The results show that keeping heat??capacity flow??rate of the partial condensate equal to that of flue gas in FGCP can avoid the pinch point of temperature difference of conventional air preheater, and the exit temperature of flue gas from boiler can be reduced to 130℃ without cold end corrosion and clog. Steam and air heaters are arranged in series after corresponding RHs, and total air is preferentially heated by extraction steam, which reduces the heat transfer temperature difference between the steam and the condensate. The power generation efficiency and the net power generation efficiency of the novel power plant are 45.34% and 44.20% respectively, increasing 1.2 and 1.0 percentage points compared with that of the conventional unit at the same capacity. The dynamic investment payback period of the modified power plant is about 4.27 years, which is feasible

References

[1]  ZHANG Huadong, ZHANG Zhixiang, JIA Zhaopeng, et al. Application of combined system of low pressure economizer and air heater [J]. Thermal Power Generation, 2016, 45(10): 127??132.
[2]  YANG Leilei. Energy??saving retrofit technical route of 300 MW subcritical unit [J]. Energy Conservation, 2017, 36(3): 54??57.
[3]  [3]刘心纯, 杨波. 300 MW燃煤机组集约型超低排放改造实践 [C]∥中国电机工程学会年会论文集. 北京: 中国电机工程学会, 2016: 1??2.
[4]  [4]YANG Y, XU C, XU G, et al. A new conceptual cold??end design of boilers for coal??fired power plants with waste heat recovery [J]. Energy Conversion and Management, 2015, 89: 137??46.
[5]  [5]刘鹤忠, 连正权. 低温省煤器在火力发电厂中的运用探讨 [J]. 电力勘测设计, 2010(4): 32??38.
[6]  LIU Hezhong, LIAN Zhengquan. Application of low temperature saving coal device in generate electricity power plant [J]. Electric Power Survey and Design, 2010(4): 32??38.
[7]  [6]李斌, 党自力. 低温省煤器设计及其动态特性分析 [J]. 热力发电, 2014(2): 25??29.
[8]  LI Bin, DANG Zili. Design and dynamic analysis of a low temperature economizer [J]. Thermal Power Generation, 2014(2): 25??29.
[9]  [7]MA Y, YANG L, LU J, PEI Y. Techno??economic comparison of boiler cold??end exhaust gas heat recovery processes for efficient brown??coal??fired power generation [J]. Energy, 2016, 116(1): 812??823.
[10]  LIU Tong, LI Jun, XU Gang, et al. Comprehensive analysis and optimal selection of front??loading air preheater in utility boiler [J]. East China Electric Power, 2013, 41(8): 1755??1759.
[11]  [11]王岩. 660 MW超超临界机组低温省煤器配置方案研究 [J]. 应用能源技术, 2013(7): 28??31.
[12]  ZHEN Puyan, WANG Qiaoliang, ZHU Qunzhi, et al. Optimization on flue gas waste heat recovery scheme in utility boiler [J]. Thermal Power Generation, 2017(7): 5??11.
[13]  [9]罗宁, 何青. 1 000 MW超超临界机组烟气余热集成利用技术研究 [J]. 电力科学与工程, 2017, 33(6): 42??47.
[14]  LUO Ning, HE Qing. Research on integrated utilization technology of flue gas waste heat for 1 000 MW ultra??supercritical unit [J]. Electric Power Science and Engineering, 2017, 33(6): 42??47.
[15]  [10]刘彤, 李君, 徐钢, 等. 锅炉前置式空气预热器综合分析与优选 [J]. 华东电力, 2013, 41(8): 1755??1759.
[16]  MA Youfu, YANG Lijuan. Techno??economic comparison of the thermodynamic system at lignite??fired boiler’s cold??end for recovering waste heat of exhaust gases [J]. Chemical Industry and Engineering Progress, 2016, 35(12): 4088??4095.
[17]  [14]XU G, XU C, YANG Y, et al. A novel flue gas waste heat recovery system for coal??fired ultra??supercritical power plants [J]. Applied Thermal Engineering, 2014, 67(1/2): 240??249.
[18]  [16]郑莆燕, 王乔良, 朱群志, 等. 电站锅炉烟气余热利用方案优化 [J]. 热力发电, 2017(7): 5??11.
[19]  [17]LIU Y, LI Q, DUAN X, et al. Thermodynamic analysis of a modified system for a 1 000 MW single reheat ultra??supercritical thermal power plant [J]. Energy, 2018, 145: 25??37.
[20]  [18]西安热工研究院. 燃煤发电机组能耗分析与节能诊断技术 [M]. 北京: 中国电力出版社, 2014: 19??21.
[21]  [19]郑体宽, 杨晨. 热力发电厂 [M]. 北京: 中国电力出版社, 2008: 154??158.
[22]  [20]车得福. 锅炉 [M].西安:西安交通大学出版社,2008: 102??105.
[23]  [21]古尔维奇, 库兹涅佐夫. 锅炉机组热力计算标准方法 [M]. 北京锅炉厂设计科, 译. 北京: 机械工业出版社, 1976: 49??59.
[24]  [22]张华东, 张知翔, 贾兆鹏, 等. 低温省煤器与暖风器联合系统应用 [J]. 热力发电, 2016, 45(10): 127??132.
[25]  [23]ZHANG H G, WANG E H, FAN B Y. Heat transfer analysis of a finned??tube evaporator for engine exhaust heat recovery [J]. Energy Conversion and Management, 2013, 65(1): 438??47.
[26]  [26]卓宁, 孙家庆. 工程对流换热 [M]. 北京: 机械工业出版社, 1991: 136??139.
[27]  MIN Yi, CHEN Donglin. Study on the thermodynamic property of supercritical reform for 300 MW subcritical coal??fired boiler [J]. China Electric Power(Technology Edition), 2016(3): 51??55.
[28]  WANG Yan. The layout plan research of low temperature economizer in 660 MW ultra supercritical coal??fired unit [J]. Applied Energy Technology, 2013(7): 28??31.
[29]  [24]HAN Y, XU G, ZHENG Q, et al. New heat integration system with bypass flue based on the rational utilization of low??grade extraction steam in a coal??fired power plant [J]. Applied Thermal Engineering, 2017, 113: 460??471.
[30]  [25]林宗虎, 徐通模. 实用锅炉手册 [M]. 北京: 化学工业出版社, 2009: 550??568.
[31]  [27]蔡明坤. 几种回转式空气预热器密封结构的比较 [J]. 锅炉技术, 2011, 42(2): 8??13.
[32]  CAI Mingkun. Comparison of different manners for air preheater leakage control [J]. Boiler Technology, 2011, 42(2): 8??13.
[33]  [28]吴志祥, 王存新. 1 000 MW机组高位收水冷却塔项目的技术经济性分析 [J]. 东北电力大学学报, 2016, 36(3): 34??40.
[34]  [1]闵怡, 陈冬林. 300 MW亚临界燃煤锅炉超临界改造的热力特性研究 [J]. 中国电业(技术版), 2016(3): 51??55.
[35]  [2]杨磊磊. 300 MW亚临界机组节能改造技术路线简述 [J]. 节能, 2017, 36(3): 54??57.
[36]  [8]田鑫, 胡清, 孙少鹏, 等. 新型电站锅炉暖风器系统优化分析 [J]. 应用能源技术, 2015(6): 32??35.
[37]  TIAN Xin, HU Qing, SUN Shaopeng, et al. The optimization analysis of the new system of the air heater in the utility boiler [J]. Applied Energy Technology, 2015(6): 32??35.
[38]  [12]ESPATOLERO S, CORT?IS C, ROMEO L M. Optimization of boiler cold??end and integration with the steam cycle in supercritical units [J]. Applied Energy, 2010, 87(5): 1651??1660.
[39]  [13]马有福, 杨丽娟. 褐煤锅炉冷端优化热力系统技术经济性比较 [J]. 化工进展, 2016, 35(12): 4088??4095.
[40]  [15]STEVANOVIC V D, WALA T, MUSZYNSKI S, et al. Efficiency and power upgrade by an additional high pressure economizer installation at an aged 620 MWe lignite??fired power plant [J]. Energy, 2014, 66(2): 907??918.
[41]  WU Zhixiang, WANG Cunxin. Technical and economic analysis of the project of the high water cooling tower of 1 000 MW unit [J]. Journal of Northeast Dianli University, 2016, 36(3): 34??40.
[42]  [29]刘亚臣. 工程经济学 [M]. 大连: 大连理工大学出版社, 2008: 53??54.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133