|
- 2018
通孔金属泡沫强化蓄冰实验研究
|
Abstract:
为了研究通孔金属泡沫内嵌相变材料凝固过程特性及泡沫材料孔结构参数对凝固过程的影响,搭建了固液相变传热可视化测量系统,利用该系统就通孔铜泡沫强化蓄冰过程开展了实验研究。实时观测了凝固相界面的瞬态移动过程,测量了金属骨架表面和内嵌相变介质的实时温度,研究结果表明:铜泡沫可有效改善蓄冰后期传热恶化现象,大幅减少蓄冰时间,加入铜泡沫后,结冰所需时间与纯水工况相比减少为48.86%(孔密度为1 181 m-1,孔隙率为0.90)和60.97%(孔密度为1 181 m-1,孔隙率为0.97);铜泡沫的孔隙率对结冰过程影响较大,孔隙率为0.90的铜泡沫比孔隙率为0.97的铜泡沫中水完全凝固时间减少20%,而孔密度对结冰过程影响可忽略不计。可视化结果表明,未凝固相局部自然对流导致凝固相界面发生倾斜,呈现下部略快于上部的凝固界面。
To explore the heat and mass transfer characteristics during the phase change in metal foams, a test rig with solid/liquid phase change heat transfer visualization device was designed and established. The effects of pore structure parameters on solidification process were measured. Results show that the involvement of open??cells in metal foam can significantly enhance the solidification process. The deterioration of phase change heat transfer can be compensated by the enhanced heat conduction with metal foam. The full solidification time can be reduced by 48??86% (pore density of 1 181 m-1 and porosity of 0.90) and 60.97% (pore density of 1 181 m-1 and porosity of 0.97), respectively, in comparison with the case of pure water. Porosity plays a vital role in solidification process but the influence of pore density upon solidification can be neglected. The full solidification time can be further reduced by 20% when the porosity decreases from 0.97 to 0.90. The visualization demonstrated an inclined solidification front, which indicated the contribution of local natural convection in the fluid phase. Local thermal equilibrium between metallic ligaments and the saturating PCM (distilled water) was experimentally observed
[1] | [2]程文龙, 韦文静. 高孔隙率泡沫金属相变材料储能、传热特性 [J]. 太阳能学报, 2007, 28(7): 739??744. |
[2] | CHENG Wenlong, WEI Wenjing. Theoretical analysis of phase change material storage with high porosity metal foams [J]. Acta Energiae Solaris Sinica, 2007, 28(7): 739??744. |
[3] | [3]李文强, 屈治国, 陶文铨. 金属泡沫内固?惨合啾涫?值模拟研究 [J]. 工程热物理学报, 2013, 34(1): 141??144. |
[4] | LI Wenqiang, QU Zhiguo, TAO Wenquan. Numerical study of solid??liquid phase change in metallic foam [J]. Journal of Engineering Thermophysics, 2013, 34(1): 141??144. |
[5] | [4]贺万玉, 闫全英. 熔融盐相变储热材料 [J]. 材料导报, 2015(S1): 128??130. |
[6] | [8]孟锋, 安青松, 郭孝峰, 等. 蓄热过程强化技术的应用研究进展 [J]. 化工进展, 2016, 35(5): 1273??1282. |
[7] | MENG Feng, AN Qingsong, GUO Xiaofeng, et al. A review of process intensification technology in thermal energy storage [J]. Chemical Industry and Engineering Progress, 2016, 35(5): 1273??1282. |
[8] | [11]杨秀, 陈振乾. 蓄冰球中填充泡沫铝的融化相变传热过程的数值模拟 [J]. 化工学报, 2008, 59(S2): 139??142. |
[9] | YANG Xiu, CHEN Zhenqian. Numerical simulation on melting phase change heat transfer in ice storage ball filled with aluminum foam [J]. Journal of Chemical Industry and Engineering, 2008, 59(S2): 139??142. |
[10] | [12]YANG X H, FENG S S, ZHANG Q C, et al. The role of porous metal foam on the unidirectional solidification of saturating fluid for cold storage [J]. Applied Energy, 2017, 194: 508??521. |
[11] | [13]FENG S S, ZHANG Y, SHI M, et al. Unidirectional freezing of phase change materials saturated in open??cell metal foams [J]. Applied Thermal Engineering, 2015, 88: 315??321. |
[12] | [14]王杰利, 屈治国, 李文强, 等. 封装有相变材料的金属泡沫复合散热器实验研究 [J]. 工程热物理学报, 2011, 32(2): 295??298. |
[13] | [1]钟亮, 潘阳. 加金属丝水平单圆管蓄冰数值模拟 [J]. 华东交通大学学报, 2011, 28(5): 35??40. |
[14] | ZHONG Liang, PAN Yang. Ice storage numerical simulation of horizontal single circular tube added with wire [J]. Journal of East China Jiaotong University, 2011, 28(5): 35??40. |
[15] | HE Wanyu, YAN Quanying. Molten salt as a phase change material [J]. Materials Review, 2015(S1): 128??130. |
[16] | [5]袁艳平, 向波, 曹晓玲, 等. 建筑相变储能技术研究现状与发展 [J]. 西南交通大学学报, 2016, 51(3): 585??598. |
[17] | YUAN Yanping, XIANG Bo, CAO Xiaoling, et al. Research status and development on latent energy storage technology of building [J]. Journal of Southwest Jiaotong University, 2016, 51(3): 585??598. |
[18] | WANG Jieli, QU Zhiguo, LI Wenqiang, et al. Experimental study of hybrid heat sink sintered with metal foams filled with phase change materials [J]. Journal of Engineering Thermophysics, 2011, 32(2): 295??298. |
[19] | [15]ZHANG P, MENG Z N, ZHU H, et al. Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam [J]. Applied Energy, 2017, 185: 1971??1983. |
[20] | [6]杨肖虎, 白佳希, 卢天健. 通孔金属泡沫渗透率解析模型 [J]. 力学学报, 2014, 46(6): 982??986. |
[21] | YANG Xiaohu, BAI Jiaxi, LU Tianjian. A simplistic analytical model of permeability for open??cell metallic foams [J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 982??986. |
[22] | [7]杨肖虎, 邝九杰, 白佳希, 等. 高孔隙率通孔金属泡沫有效导热系数的实验和理论研究 [J]. 西安交通大学学报, 2014, 48(4): 79??84. |
[23] | YANG Xiaohu, KUANG Jiujie, BAI Jiaxi, et al. Experimental and analytic investigations for effective thermal conductivity in high porosity metallic foams [J]. Journal of Xi’an Jiaotong University, 2014, 48(4): 79??84. |
[24] | [9]蒋玉龙, 张素军, 李菊香. 泡沫材料冰蓄冷板融化过程的研究 [J]. 制冷学报, 2015, 36(5): 65??73. |
[25] | JIANG Yulong, ZHANG Sujun, LI Juxiang. Investigation on melting process of ice cold??plate with porous material [J]. Journal of Refrigeration, 2015, 36(5): 65??73. |
[26] | [10]施娟, 陈振乾, 施明恒. 蓄冰球内多孔泡沫金属对流体冻结传热影响的试验研究 [J]. 工程热物理学报, 2010, 31(8): 1395??1397. |
[27] | SHI Juan, CHEN Zhenqian, SHI Mingheng. Experimental study on the effect of the porous metal foams in ice ball on the freezing heat transfer of fluid [J]. Journal of Engineering Thermophysics, 2010, 31(8): 1395??1397. |