|
- 2018
高温水蒸气氛围中煤燃烧特性研究
|
Abstract:
针对煤燃烧过程中产生大量NOx的问题,提出了在燃烧系统中加入高温水蒸气来实现低氮燃烧的方案,并对此进行了热力学计算和实验研究。根据标准摩尔反应吉布斯自由能变、标准摩尔反应焓和平衡常数,理论计算了加入高温水蒸气后煤的挥发分燃烧过程中各反应发生的可能性和限度。反应路径推测的结果表明:高温水蒸气氛围中,在煤燃烧的温度区间内可能进行N元素转化为N2的反应。利用HSC Chemistry软件计算了过量空气系数不同时,在系统中加入不同含量的高温水蒸气后的平衡态组分。热力学计算结果表明:当过量空气系数在0.6~0.8、温度在700~800℃时,向燃烧体系中加入高温水蒸气可以抑制NOx生成;高温水蒸气的含量增加时,NOx减少率增加。利用煤粉固定床燃烧实验系统进行了在水蒸气和空气氛围中煤粉的燃烧特性实验。实验结果表明:加入高温水蒸气抑制了NOx的生成,且优于计算结果;NOx减少率与水蒸气体积分数呈现非线性关系。该研究可为煤的低氮燃烧提供经济高效的参考方案。
A scheme of adding high temperature water vapor to the combustion system to achieve low??nitrogen combustion is proposed to reduce NOx production during coal combustion, and its thermodynamic calculation and experimental research are carried out. Firstly, the possibility and limitation of the reactions in the volatile combustion process of coal after adding high temperature water vapor are examined by theoretical calculation based on the standard molar reaction Gibbs free energy change, the standard molar enthalpy and the equilibrium constant. Results of reaction path speculation show that in the high temperature water vapor atmosphere, the reactions of converting N element to N2 occur in the temperature range of coal combustion. Secondly, in reactions with various excess air coefficients, the equilibrium components after adding different concentrations of high temperature water vapor are calculated using the software HSC Chemistry. Results of the thermodynamic calculation show that the reaction of NOx precursor to N2 happens in a wide temperature range: when the temperature ranges from 700 to 800 and excess air coefficient lies between 0.6 and 0.8, the formation of NOx significantly reduces by adding high temperature water vapor; Reduction rate of NOx increases with the concentration of high temperature water vapor increasing. Eventually, the combustion characteristics of pulverized coal in water vapor and air atmosphere are tested in a pulverized coal fixed bed combustion experiment system. It shows that the formation of NOx is inhibited by adding high temperature water vapor and the effect is better that the result of the thermodynamic calculation, and the NOx reduction rate has a nonlinear relation with the water vapor concentration and the temperature. This study may provide an economical and efficient reference solution to low NOx combustion of coal
[1] | [4]BLEVINS L G, ROBY R J. An experimental study of NOx reduction in laminar diffusion flames by addition of high levels of steam [C]∥Proceedings of the 1995 International Gas and Aeroengine Congress and Exposition. New York, USA: ASME, 1995: V003T06A??054. |
[2] | [5]CAI Lei, ZOU Chun, GUAN Yanwen, et al. Effect of steam on ignition of pulverized coal particles in oxy??fuel combustion in a drop tube furnace [J]. Fuel, 2016, 182: 958??966. |
[3] | [6]GIL M V, RIAZA J, ?BLVAREZ L, et al. A study of oxy??coal combustion with steam addition and biomass blending by thermogravimetric analysis [J]. Journal of Thermal Analysis and Calorimetry, 2012, 109(1): 49??55. |
[4] | [7]ZHANG Liang, ZOU Chun, WU Di, et al. A study of coal chars combustion in O2/H2O mixtures by thermogravimetric analysis [J]. Journal of Thermal Analysis and Calorimetry, 2016, 126(2): 995??1005. |
[5] | [8]ACUTE A, LVAREZ L, RIAZA J, et al. NO emissions in oxy??coal combustion with the addition of steam in an entrained flow reactor [J]. Greenhouse Gases Science and Technology, 2011, 1(2): 180??190. |
[6] | [9]武洋仿, 景晓霞, 孙鸿, 等. 煤种及气氛对煤热解中NH3和HCN释放的影响 [J]. 山西化工, 2008, 28(1): 18??20. |
[7] | [10]苟湘, 周俊虎, 周志军, 等. 水蒸气对煤粉燃烧生成NO的影响 [J]. 热力发电, 2007, 36(10): 4??8. |
[8] | GOU Xiang, ZHOU Junhu, ZHOU Zhijun, et al. The influence of water vapor upon formation of NO in combustion of pulverized coal [J]. Thermal Power Generation, 2007, 36(10): 4??8. |
[9] | [13]杨波. 煤焦水蒸气气化过程中含N气体产物的析出特性 [J]. 能源研究与管理, 2013(3): 29??31. |
[10] | YANG Bo. Formation of N??containing gas??phase species from char gasification in steam [J]. Energy Research and Management, 2013(3): 29??31. |
[11] | [14]葛华才, 袁高清, 彭程. 物理化学 [M]. 北京: 高等教育出版社, 2008: 35??36. |
[12] | [15]刘艳华, 车得福, 李荫堂, 等. X射线光电子能谱确定铜川煤及其焦中氮的形态 [J]. 西安交通大学学报, 2001, 35(7): 661??665. |
[13] | LIU Yanhua, CHE Defu, Li Yintang, et al. X??ray photoelectron spectroscopy determination of the forms of nitrogen in Tongchuan coal and its chars [J]. Journal of Xi’an Jiaotong University, 2001, 35(7): 661??665. |
[14] | [16]赵科, 谭厚章, 周屈兰, 等. 煤的模型化合物热解过程中HCN、NH3的逸出规律 [J]. 热能动力工程, 2004, 19(3): 246??248. |
[15] | BI Yong. Gasmet handy Fourier transform infrared spectrometer and application examples in environmental emergency monitoring [J]. Modern Scientific Instruments, 2011(4): 90??92. |
[16] | [3]TIGGES K D, LEISSE A, LASTAUS D, et al. The development of low pollutant Pulverized??fuel firing systems [J]. VGB Krafwerkstechnik English Version, 1996, 76(5): 358??363. |
[17] | TIAN Luning, CHEN Zhenfeng, WANG Xianhua, et al. Effect of steam and limestone on NO during oxy??fuel fluidized bed combustion [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2014, 42(8): 95??99. |
[18] | ZHAO Ke, TAN Houzhang, ZHOU Qulan, et al. The law of HCN and NH3 escape during the pyrolysis of model compounds of coal [J]. Journal of Engineering for Thermal Energy and Power, 2004, 19(3): 246??248. |
[19] | [17]毕勇. Gasmet便携式傅里叶变换红外气体分析仪及其在环境应急监测中的应用 [J]. 现代科学仪器, 2011(4): 90??92. |
[20] | [1]翁非. 中国能源结构特征及发展前瞻 [J]. 经济视角(下旬刊), 2012(3): 90??92. |
[21] | WU Yangfang, JING Xiaoxia, SUN Hong, et al. Effect of coal and reaction gas on NH3 released during coal pyrolysis [J]. Shanxi Chemical Industry, 2008, 28(1): 18??20. |
[22] | [11]田路泞, 陈振辉, 王贤华, 等. 水蒸气和石灰石对流化床富氧燃烧NO的影响 [J]. 华中科技大学学报(自然科学版), 2014, 42(8): 95??99. |
[23] | [2]顾卫荣, 周明吉. 火电厂烟气脱硝国内市场分析 [J]. 化工进展, 2012, 31(11): 2581??2585. |
[24] | GU Weirong, ZHOU Mingji. Denitrification industry of power plant [J]. Chemical Industry and Engineering Progress, 2012, 31(11): 2581??2585. |
[25] | [12]陈移峰. 生物质与煤矸石混合热解与燃烧特性实验研究 [D]. 重庆: 重庆大学, 2007: 33??34. |