|
- 2018
多段连续结构的外骨骼手指功能康复机器人
|
Abstract:
针对现在手部功能康复机器人存在的不足,如刚性结构带来的机构复杂、质量大,运动过程中难以保证刚性连杆的转动中心与关节中心时刻对准而带来的安全问题,以及软体气动?惨貉菇峁勾嬖诘钠?压源?惨貉乖刺寤?质量大导致的便携性差等问题,提出了一种新型的由单层弹簧片驱动的多段连续结构的外骨骼手指功能康复机器人,以协助患者进行双向的屈曲、伸展运动。该结构具有良好的柔顺性,使得人手与外骨骼机器人之间的相互作用更加安全,设计的机构可以将线性运动转化为手指关节的旋转运动,通过单个电机输入即可协助患者在足够大的运动范围内进行康复训练。对该外骨骼机器人的特性测量实验表明,该外骨骼可以协助患者在一定角度范围内进行手指的屈曲和伸展运动,并能够在指尖产生足够的指尖力。提出的设计对其他的康复机器人有一定的参考作用,具备工程使用价值。
Aiming at shortcomings of current hand function rehabilitation exoskeleton, such as the complicated mechanism, heavy weight due to the rigid structure, the safety problems caused by the joint misalignment during the rehabilitation movements, and the problem that air source and liquid reservoir of pneumatic and hydraulic exoskeleton greatly increase the size of the whole system, this paper proposes a novel exoskeleton for rehabilitation using a multi??segment mechanism driven by one layer of steel spring to assist both extension and flexion of the finger. The structure has good flexibility to make the interaction between exoskeleton and patients safer. This mechanism can generate enough range of motion with a single input by distributing an actuated linear motion into rotational motions of the finger joints. The experiments show that the exoskeleton can assist patients to flex and stretch their fingers within enough motion ranges and generates sufficient fingertip force
[1] | GUO Xiaohui, WANG Jing, YANG Yang, et al. Active and passive training system of lower limb rehabilitation based on virtual reality [J]. Journal of Xi’an Jiaotong University, 2016, 50(2): 124??131. |
[2] | [6]MERIANS A S, JACK D, BOIAN R, et al. Virtual reality??augmented rehabilitation for patients following stroke [J]. Physical Therapy, 2002, 82(9): 898??915. |
[3] | [7]IQBAL J, KHAN H, TSAGARAKIS N G, et al. A novel exoskeleton robotic system for hand rehabilitation: conceptualization to prototyping [J]. Biocybernetics & Biomedical Engineering, 2014, 34(2): 79??89. |
[4] | [8]ARATA J, OHMOTO K, GASSERT R, et al. A new hand exoskeleton device for rehabilitation using a three??layered sliding spring mechanism [C]∥IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2013: 3902??3907. |
[5] | [9]胡鑫, 张颖, 李继才, 等. 一种外骨骼式手功能康复训练器的研究 [J]. 生物医学工程学杂志, 2016(1): 23??30. |
[6] | HU Xin, ZHANG Yin, LI Jicai, et al. Study on an exoskeleton hand function training device [J]. Journal of Biomedical Engineering, 2016(1): 23??30. |
[7] | [1]HEO P, GU G M, LEE S J, et al. Current hand exoskeleton technologies for rehabilitation and assistive engineering [J]. International Journal of Precision Engineering & Manufacturing, 2012, 13(5): 807??824. |
[8] | [2]TAKAHASHI C D, DERYEGHIAIAN L, LE V, et al. Robot??based hand motor therapy after stroke [J]. Brain: AJournal of Neurology, 2008, 131(2): 425??437. |
[9] | [3]KAMPER D G, FISCHER H C, CRUZ E G, et al. Weakness is the primary contributor to finger impairment in chronic stroke [J]. Archives of Physical Medicine & Rehabilitation, 2006, 87(9): 1262??1269. |
[10] | [4]陈学斌, 高海鹏, 刘文勇, 等. 手外骨骼康复技术研究进展 [J]. 中国医疗设备, 2016, 31(2): 86??91. |
[11] | CHEN Xuebin, GAO Haipeng, LIU Wenyong, et al. Research on the development of hand exoskeleton as a rehabilitation technology [J]. China Medical Equipment, 2016, 31(2): 86??91. |
[12] | [5]郭晓辉, 王晶, 杨扬, 等. 基于虚拟现实的下肢主被动康复训练系统研究 [J]. 西安交通大学学报, 2016, 50(2): 124??131. |
[13] | [10]POLYGERINOS P, WANG Z, GALLOWAY K C, et al. Soft robotic glove for combined assistance and at??home rehabilitation [J]. Robotics & Autonomous Systems, 2015, 73(C): 135??143. |
[14] | [11]TONG K Y, HO S K, PANG P M K, et al. An intention driven hand functions task training robotic system [C]∥2010 Annual International Conference of the IEEE Engineering in Medicine & Biology Society. Piscataway, NJ, USA: IEEE, 2010: 3406??3409. |
[15] | [13]HO N S, TONG K Y, HU X L, et al. An EMG??driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation [C]∥IEEE International Conference on Rehabilitation Robotics. Piscataway, NJ, USA: IEEE, 2011: 5975340. |
[16] | [12]CUI L, PHAN A, ALLISON G. Design and fabrication of a three dimensional printable non??assembly articulated hand exoskeleton for rehabilitation [C]∥Proceedings of the Annual International Conference of the IEEE Engineering in Medicine & Biology Society. Piscataway, NJ, USA: IEEE, 2015: 4627??4630. |
[17] | [14]RUS D, TOLLEY M T. Design, fabrication and control of soft robots [J]. Nature, 2015, 521(7553): 467??475. |
[18] | [15]HONG K Y, LIM J H, NASRALLAH F, et al. A soft exoskeleton for hand assistive and rehabilitation application using pneumatic actuators with variable stiffness [C]∥Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2015: 4967??4972. |
[19] | [16]IN H, KANG B B, SIN M K, et al. Exo??glove: a wearable robot for the hand with a soft tendon routing system [J]. IEEE Robotics & Automation Magazine, 2015, 22(1): 97??105. |
[20] | [17]BORBONI A, MOR M, FAGLIA R. Gloreha??hand robotic rehabilitation: design, mechanical model and experiments [J]. Journal of Dynamic Systems Measurement & Control, 2016, 138(11): 111003. |
[21] | [18]HU X L, TONG K Y, SONG R, et al. A comparison between electromyography??driven robot and passive motion device on wrist rehabilitation for chronic stroke [J]. Neurorehabilitation & Neural Repair, 2009, 23(8): 837??846. |
[22] | [19]POLYGERINOS P, GALLOWAY K C, SAVAGE E, et al. Soft robotic glove for hand rehabilitation and task specific training [C]∥Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2015: 2913??2919. |
[23] | [20]SMABY N, JOHANSON M E, BAKER B, et al. Identification of key pinch forces required to complete functional tasks [J]. Journal of Rehabilitation Research & Development, 2004, 41(2): 215??224. |