全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

沉割槽对滑阀阀芯径向卡紧力的影响
Effects of Cutting Groove on Radial Clamping Force of a Slide Valve’s Spoo

DOI: 10.7652/xjtuxb201806012

Keywords: 滑阀,沉割槽,径向卡紧力,偏心
slide valve
,cutting groove,radial clamping force,eccentricity

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对液压滑阀阀体沉割槽内液体流速不同会产生径向卡紧力的问题,利用CFD软件对某滑阀沉割槽处阀芯台肩所受径向压力分布进行研究,同时,根据滑阀内部流道的结构特点,结合理想流体伯努利方程,建立了沉割槽处阀芯台肩上压力分布的数学模型,并且通过实验验证了模型的准确性,分析了沉割槽尺寸及流量对阀芯径向压力分布的影响。研究表明:阀芯台肩上径向压力分布不均匀,且压力值随入口流量、沉割槽深度和宽度呈二次多项式函数关系上升;随压力点位置从远离出口位置至靠近出口呈平方关系下降;当阀口开度为0??5 mm、流量为40 L/min时阀芯台肩径向卡紧力为4??2 N,是流量为10 L/min情况下的16倍,且沉割槽深度减半后,卡紧力增至14??47 N。最后,提出了一种偏心沉割槽结构,仿真结果表明,入口流量大于40 L/min时,偏心沉割槽结构中径向压力分布的不均匀度比传统同心结构提高了64%以上,有效降低阀芯径向卡紧力。
The radial force distribution of the spool is analyzed using computational fluid dynamics’ software to solve the problem that radial clamping force is generated on the shoulder of the valve spool for the difference in flow velocity around the groove because of the existence of the cutting groove in the house of slide valve. A mathematical model of the pressure distribution is derived based on the inner flow channel structure of the slide valve with combination of the ideal fluid’s Bernoulli equation and the accuracy of the model is verified by experiments. The results show that the radial pressure distribution on the spool shoulder is uneven, and the valve increases in quadratic polynomial form with the groove’s depth, width, and inlet flow rate, while a decrease in square relation with the distance from the position to the exit port. The radial clamping force on the spool shoulder is 4??2 N when the inlet flow is 40 L/min and valve opening is 0??5 mm, which is 16 times larger than the value under 10 L/min. The force increases to 14??47 N when the depth of the groove is halved. Finally, an eccentric groove structure is proposed, and simulation results show that the structure reduces unevenness of the radial pressure on the spool by more than 64% when the flow is larger than 40 L/min, and effectively reduces the radial clamping force of the spool

References

[1]  [1]AMIRANTE R, VESCOVO G D, LIPPOLIS A. Evaluation of the flow forces on an open centre directional control valve by means of a computational fluid dynamic analysis [J]. Energy Conversion and Management, 2006, 147: 1748??1760.
[2]  [2]AMIRANTE R, VESCOVO G D, LIPPOLIS A. Flow forces Analysis of an open center hydraulic directional control valve sliding spool [J]. Energy Conversion and Management, 2006, 47: 114??131.
[3]  [3]AMIRANTE R, MOSCATELLI P G, CATALANO L A. Evaluation of the flow forces on a direct proportional valve by means of a computational fluid dynamic analysis [J]. Energy Conversion and Management, 2007, 48: 942??953.
[4]  [8]LISOWSKI E, FILO G, RAJDA J. Pressure compensation using flow forces in a multi??section proportional directional control valve [J]. Energy Conversion and Management, 2015, 103: 1052??1064.
[5]  [15]陆倩倩, 阮健, 李胜. 伯努利效应引起滑阀阀芯径向力的研究 [J]. 中国机械工程, 2017, 28(19): 2332??2338. LU Qianqian, RUAN Jian, LI Sheng. Research of the radial pressure for hydraulic slide valve caused by Bernoulli effect [J]. China Mechanical Engineering, 2017, 28(19): 2332??2338.
[6]  [16]童成伟, 阮健, 孔晨菁, 等. 2D电液转阀式换向阀阀芯卡紧力分析 [J]. 液压气动与密封, 2016(4): 5??8.
[7]  TONG Chengwe, RUAN Jian, KONG Chenjing, et al. Analysis of the clamping force for 2D electro??hydraulic rotary valve [J]. Hydraulics Pneumatics & Seal, 2016(4): 5??8.
[8]  WANG Anlin, WU Xiaofeng, ZHOU Chenglin, et al. Multidisciplinary optimization of a hydraulic slide valve based on CFD [J]. Journal of Shanghai Jiaotong University, 2010, 44(12): 1767??1772.
[9]  [6]吴小锋, 干为民, 刘春节, 等. 液压换向滑阀内部结构的健壮性设计 [J]. 中国机械工程, 2015, 26(15): 2030??2040.
[10]  WU Xiaofeng, GANG Weimin, LIU Chunjie, et al. Robust design of hydraulic slide valve internal structure [J]. China Mechanical Engineering, 2015, 26(15): 2030??2040.
[11]  [9]LISOWSKI E, FILO G. CFD analysis of the characteristics of a proportional flow control valve with an innovative opening shape [J]. Energy Conversion and Management, 2016, 123: 15??28.
[12]  [4]AMIRANTE R, DISTASO E, TAMBURRAN P. Sliding spool design for reducing the actuation forces in direct operated proportional directional valves: Experimental validation [J]. Energy Conversion and Management, 2016, 119: 399??410.
[13]  [5]王安麟, 吴小锋, 周成林, 等. 基于CFD的液压滑阀多学科优化设计 [J]. 上海交通大学学报, 2010, 44(12): 1767??1772.
[14]  [7]LISOWSKI E, CZYZYCKI W, RAJDA J. Three dimensional CFD analysis and experimental test of flow force acting on the spool of solenoid operated directional control valve [J]. Energy Conversion and Management, 2013, 70: 220??229
[15]  [10]POSA A, ORESTA P, LIPPOLIS A. Analysis of a directional hydraulic valve by a Direct Numerical Simulation using an immersed??boundary method [J]. Energy Conversion and Management, 2013, 65: 497??506.
[16]  [11]GUO Haiping, LI Baoren, YANG Gang. Study on the influence of flow force on a large flowrate directional control valve [C]∥ 6th IFAC Symposium on Mechatronic Systems. Laxenburg, Austria: The International Federation of Automatic Control Secretariat, 2013: 469??477.
[17]  [12]冀宏, 傅新, 杨华勇, 等. 非全周开口滑阀压力分布测量研究 [J]. 机械工程学报, 2004, 40(4): 99??102.
[18]  JI Hong, FU Xin, YANG Huayong, et al. Measurement on pressure distribution of Non??circular opening spool valve [J]. Chinese Journal of Mechanical Engineering, 2004, 40(4): 99??102.
[19]  [13]HONG S H, KIM K W. A new type groove for hydraulic spool valve [J]. Tribology International, 2016, 103: 629??640.
[20]  [14]罗艳蕾, 吴健兴, 陈伦军, 等. 基于CFD的液压滑阀阀芯均压槽的研究 [J]. 液压气动与密封, 2013(1): 13??15.
[21]  LUO Yanlei, WU Jianxing, CHEN Lunjun, et al. The research of the Pressure??equalizing grove for hydraulic slide valve based on CFD [J]. Hydraulics Pneumatics & Seals, 2013(1): 13??15.
[22]  [17]刘国文, 阮健, 李胜, 等. 2D电液比例换向阀阀芯卡紧力分析 [J]. 中国机械工程, 2015, 26(15): 1995??1999.
[23]  LIU Guowen, RUAN Jian, LI Sheng, et al. Analysis of spool clipping force for 2D electro??hydraulic proportional directional valve [J]. China Mechanical Engineering, 2015, 26(15): 1995??1999.
[24]  [18]盛敬超. 液压流体力学 [M]. 北京: 机械工业出版社, 1980: 120.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133