全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

采用投影螺旋搜索的改进粒子群算法
An Improved Particle Swarm Optimization Algorithm with Projective Spiral Searches

DOI: 10.7652/xjtuxb201806008

Keywords: 螺旋搜索,粒子群算法,混沌变异,自适应算子选择
spiral search
,particle swarm optimization,chaos perturbation,adaptive operator selection

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对传统粒子群算法在求解高维决策空间问题时容易陷入局部最优的缺点,提出采用投影螺旋搜索的改进粒子群算法。该算法提出了一种基于投影空间的螺旋搜索粒子更新方式,并应用于粒子群算法中以解决早熟问题;为了增强寻优能力,引入混沌策略生成螺旋搜索的参数以提高搜索的随机性;使用自适应算子选择策略分配螺旋搜索更新和传统粒子更新的选择概率,使2种粒子更新方式在不同搜索阶段发挥最大效用。仿真实验表明:与基本粒子群算法相比,提出的算法能够以较少的迭代次数收敛,寻优精度最大可提高10-13,适合于求解一类具有连续空间复杂多峰值特点的工程应用问题。
An improved PSO algorithm with spiral search(SSPSO) is presented to solve the shortcoming that the traditional particle swarm optimization (PSO) algorithm is easy to fall into a local optimum when complex functions in high??dimensional decision space is solved. A new particle update method based on spiral searches in projection space is proposed and applied to PSO to solve the premature convergence problem; Chaos perturbation is introduced to improve the randomness of spiral search so that the search ability is improved. An adaptive selection strategy of operators is also used to balance the usage of spiral search and basic particle update strategy and to maximize their effectiveness in different search stages. Experimental results and a comparison with the traditional PSO indicate that SSPSO converges with fewer iterations and improves the computation accuracy up to 10-13. The algorithm is suitable for solving engineering application problems with characteristics of complexity, multiple peaks and continuous space

References

[1]  [12]滕弘飞, 张英男. 螺旋粒子群优化算法的研究简报 [EB/OL]. (2012/4/10)[2017??06??23]. http: ∥www?? docin??com/p??379958059??html.
[2]  [13]DOAN B, ?ZLMEZ T. A new metaheuristic for numerical function optimization: vortex search algorithm [J]. Information Sciences, 2015, 293(1): 125??145.
[3]  [14]李盼池, 卢爱平. 量子衍生涡流搜索算法 [J]. 控制与决策, 2015, 31(6): 990??996.
[4]  LI Panchi, LU Aiping. Quantum??inspired vortex search algorithm [J]. Control and Decision, 2015, 31(6): 990??996.
[5]  [15]CLERC M, KENNEDY J. The particle swarm: explosion, stability and convergence in a multi??dimensional complex space [J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 58??73.
[6]  [16]LIU Bo, WANG Liang, JIN Yihui, et al. Improved particle swarm optimization combined with chaos [J]. Chaos, Solitons and Fractals, 2005, 25(5): 1261??1271.
[7]  [17]纪震, 廖惠连, 吴青华. 粒子群算法及应用 [M]. 北京: 科学出版社, 2009: 73??113.
[8]  [1]KENNEDY J, EBERHART R C. Particle swarm optimization [C]∥Proceedings of the IEEE International Conference on Neural Networks. Piscataway, NJ, USA: IEEE, 1995: 1942??1948.
[9]  [2]EBERHART R, KENNEDY J. A new optimizer using particle swarm theory [C]∥Proceedings of the International Symposium on Micro Machine and Human Science. Piscataway, NJ, USA: IEEE, 1995: 39??43.
[10]  [3]张卿?t, 王兴伟, 黄敏. 基于PSO和SA混合优化的智能容错QoS路由机制 [J]. 东北大学学报(自然科学版), 2017, 38(3): 325??330.
[11]  ZHANG Qingyi, WANG Xingwei, HUANG Min. An intelligent fault??tolerant QoS routing mechanism based on PSO and SA hybrid optimization [J]. Journal of Northeastern University(Natural Science), 2017, 38(3): 325??330.
[12]  [4]DE S?B A O, NEDJAH N, DE MOURELLE L M. Distributed efficient localization in swarm robotics using min??max and particle swarm optimization [J]. Expert Systems with Applications, 2016, 50(C): 55??65.
[13]  [5]WITEK H A, CHOU C P, MAZUR G, et al. Automatized parameterization of the density??functional tight??binding method: IITwo??center integrals [J]. Journal of the Chinese Chemical Society, 2016, 63(1): 57??68.
[14]  [6]OLIVAS F, VALDEZ F, CASTILLO O, et al. Dynamic parameter adaptation in particle swarm optimization using interval type??2 fuzzy logic [J]. Soft Computing, 2016, 20(3): 1057??1070.
[15]  [7]XU Xiaolong, RONG Hanzhong, TROVATI M, et al. CS??PSO: chaotic particle swarm optimization algorithm for solving combinatorial optimization problems [J]. Soft Computing, 2016, 2018(22): 1??13.
[16]  [10]LI T H S, LIN C J, KUO Pinghuan, et al. Grasping posture control design for a home service robot using an ABC??based adaptive PSO algorithm [J]. International Journal of Advanced Robotic Systems, 2016, 13(10): 1??15.
[17]  [11]LI Xiangtao, YIN Minghao. A particle swarm inspired cuckoo search algorithm for real parameter optimization [J]. Soft Computing, 2016, 20(4): 1389??1413.
[18]  [8]SUN Wei, LIN Anping, YU Hongshan, et al. All??dimension neighborhood based particle swarm optimization with randomly selected neighbors [J]. Information Sciences, 2017, 405(9): 141??156.
[19]  [9]PORNSING C, SODHI M S, LAMOND B F. Novel self??adaptive particle swarm optimization methods [J]. Soft Computing, 2016, 20(9): 3579??3593.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133