|
- 2017
圆锥微凸体在粗糙表面接触分析中的应用
|
Abstract:
为了从微观角度研究粗糙表面的法向接触特性,构建了一种具有圆锥微凸体的有限元分析模型。对反双曲余弦应力进行定积分,获得了作用在单个圆锥接触区域的总法向弹性接触力;给出了圆锥顶点法向变形量与接触半径之间的拟合公式。数值模拟表明:反双曲余弦应力在锥尖处(接触区域的中心)有一个自然对数奇点,但作用在单个圆锥接触区域的总法向弹性接触力有边界;单个圆锥的法向弹性接触载荷随着半顶角的增加先增大后减小;结合部整体的法向接触载荷随着表面粗糙度的减小而增大;当法向最大变形量明显增大时,结合部整体的法向接触载荷随着法向最大变形量的增加仅有微小的增加;半顶角越大,单个圆锥的法向接触刚度也越大;随着圆锥顶点法向变形量的增加,单个圆锥的法向接触刚度先略微减小,而后保持不变;法向临界变形量较小时,结合部整体的法向接触刚度随着法向临界变形量的增加而近似于线性增大;表面粗糙度越小,结合部整体的法向接触刚度增加得越明显;法向临界变形量较大时,结合部整体的法向接触刚度趋于不变。
A finite element analysis model with conical asperity is proposed to investigate the normal contact characters of rough surfaces in the micro perspective. The total normal elastic contact force acting on the single??cone contact region is obtained through definite integrate of the inverse hyperbolic cosine stress. A formula fitting the normal deformation of cone tip and the contact radius is given. Digital simulations show that although the inverse hyperbolic cosine stress has a natural logarithmic singular spot at the tip of the cone (at the center of the contact region), the total normal elastic contact force acting on the single??cone contact domain is bounded. The normal elastic contact load on single cone increases at first and then decreases with the increase of the half apex angle. The joint interface’s total normal contact load increases with the decrease of the surface roughness. When the normal maximal deformation increases very evidently, the increase of the total normal contact load on joint interface is very small. The larger the half apex angle is, the larger the single??cone normal contact stiffness becomes. When the normal deformation of the cone tip increases, the single??cone normal contact stiffness slightly decreases at first and then keeps constant. When the normal critical deformation is smaller, the joint interface’s total normal contact stiffness has an approximate linear increase with the increase of the normal critical deformation. The smaller the surface roughness is, the more evidently the joint interface’s total normal contact stiffness increases. When the normal critical deformation is larger, the joint interface’s whole normal contact stiffness approaches constant
[1] | LIU Weiqiang, ZHANG Jinhua, HONG Jun, et al. Elastic contact model of elliptical parabolic asperity [J]. Journal of Xi’an Jiaotong University, 2015, 49(10): 34??40. |
[2] | XU Zhiqian, YAN Xiangzhen, YANG Xiujuan, et al. Contact behavior analysis for rough surfaces with random sampling [J]. Journal of Xi’an Jiaotong University, 2012, 46(5): 102??108, 113. |
[3] | [12]许志倩, 闫相祯, 杨秀娟, 等. 基于分形理论和随机抽样的机加工表面粗糙度轮廓曲线几何形貌共性表征 [J]. 应用基础与工程科学学报, 2015, 23(6): 1134??1145. |
[4] | [17]盛骤, 谢式千, 潘承毅. 概率论与数理统计 [M]. 4版. 北京: 高等教育出版社, 2017: 52. |
[5] | [7]庄艳, 李宝童, 洪军, 等. 一种结合面法向接触刚度计算模型的构建 [J]. 上海交通大学学报, 2013, 47(2): 180??186. |
[6] | ZHUANG Yan, LI Baotong, HONG Jun, et al. A normal contact stiffness model of the interface [J]. Journal of Shanghai Jiao Tong University, 2013, 47(2): 180??186. |
[7] | [11]许志倩, 闫相祯, 杨秀娟, 等. 随机抽样在粗糙表面接触力学行为分析中的应用 [J]. 西安交通大学学报, 2012, 46(5): 102??108, 113. |
[8] | XU Zhiqian, YAN Xiangzheng, YANG Xiujuan, et al. Common characterization of the machined surface roughness profile geometric morphology based on fractal theory and random sampling [J]. Journal of Basic Science and Engineering, 2015, 23(6): 1134??1145. |
[9] | [1]MAJUMDAR A, BHUSHAN B. Fractal model of elastic??plastic contact between rough surfaces [J]. ASME Journal of Tribology, 1991, 113(1): 1??11. |
[10] | [2]ADAMS G G, NOSONOVSKY M. Contact modeling: forces [J]. Elsevier Tribology International, 2000, 33(5/6): 431??442. |
[11] | [3]SEPEHRI A, FARHANG K. Closed??form equations for three dimensional elastic??plastic contact of nominally flat rough surfaces [J]. ASME Journal of Tribology, 2009, 131(4): 041402. |
[12] | [4]SEPEHRI A, FARHANG K. On elastic interaction of nominally flat rough surfaces [J]. ASME Journal of Tribology, 2008, 130(1): 011014. |
[13] | [5]DWYER??JOYCE R S, USHIJIMA Y, MURAKAMI Y, et al. Some experiments on the micro??indentation of digital audio tape [J]. Elsevier Tribology International, 1998, 31(9): 525??530. |
[14] | [6]刘伟强, 张进华, 洪军, 等. 椭圆抛物体形微凸体弹性接触力学模型 [J]. 西安交通大学学报, 2015, 49(10): 34??40. |
[15] | [8]刘会静, 杨国庆, 洪军, 等. 抛物柱切向滑移特性的分析 [J]. 西安交通大学学报, 2012, 46(11): 75??79. |
[16] | LIU Huijing, YANG Guoqing, HONG Jun, et al. Finite element analysis for sliding characteristics between two parabolic columns [J]. Journal of Xi’an Jiaotong University, 2012, 46(11): 75??79. |
[17] | [9]刘会静, 洪军, 杨国庆, 等. 微凸体切向滑移特性 [J]. 浙江大学学报(工学版), 2014, 48(6): 1114??1119. |
[18] | LIU Huijing, HONG Jun, YANG Guoqing, et al. Tangential sliding characteristics of asperities [J]. Journal of Zhejiang University (Engineering Science), 2014, 48(6): 1114??1119. |
[19] | [10]杨国庆, 熊美华, 洪军, 等. 3D粗糙表面的数字化表征与接触特性分析 [J]. 西安交通大学学报, 2012, 46(11): 58??63. |
[20] | YANG Guoqing, XIONG Meihua, HONG Jun, et al. Numerical characterization and contact performances for 3D rough surfaces [J]. Journal of Xi’an Jiaotong University, 2012, 46(11): 58??63. |
[21] | [13]朱林波, 庄艳, 洪军, 等. 一种考虑侧接触的微凸体弹塑性接触力学模型 [J]. 西安交通大学学报, 2013, 47(11): 48??52, 104. |
[22] | ZHU Linbo, ZHUANG Yan, HONG Jun, et al. Elastic??plastic model for contact of two asperities considering shoulder??shoulder contact [J]. Journal of Xi’an Jiaotong University, 2013, 47(11): 48??52, 104. |
[23] | [14]JOHNSON K L. Contact mechanics [M]. 9th printing. Cambridge, United Kingdom: Cambridge University Press, 2004: 165, 235. |
[24] | [15]POPOV V L. Contact mechanics and friction: physical principles and applications [M]. New York, USA: Springer??Verlag, 2010: 63. |
[25] | [16]SNEDDON I N. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile [J]. Elsevier International Journal of Engineering Science, 1965, 3(1): 47??57. |