全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

高含固污泥临界剪切应力影响因素的研究
Effect of High??Solid Sewage Sludge on Critical Shear Stress

DOI: 10.7652/xjtuxb201711009

Keywords: 高含固污泥,流变特性,临界剪切应力,改进的Herschel??Bulkley模型
high??solid sludge
,rheological behaviors,critical shear stress,revised Herschel?? Bulkley model

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了进一步研究高含固污泥的流变特性,根据污泥含固率rTS选择改进的Herschel??Bulkley流变模型,以模拟污泥在反应器中的合理流动,并对污泥种类、含固率、剪切速率范围、温度对高含固污泥流变曲线中临界应力的影响进行了实验研究。实验中采用含固率rTS为5.2%~15.8%的厌氧消化污泥,在0.01~1 000 s-1的剪切速率范围内进行稳态流变特性的测试。结果表明:当rTS<8??8%时,流变曲线符合Herschel??Bulkley模型;当rTS>8.8%时,流变曲线在1~10 s-1内出现临界剪切应力,符合改进的Herschel??Bulkley模型;临界剪切应力与污泥含固率、剪切速率范围有关,与污泥的种类、成分组成、测试温度以及厌氧消化时间无关;临界剪切应力对应的临界剪切速率c与含固率之间呈线性关系。该结果可为污泥物理化学性质研究提供一定的参考。
To further study the rheological characteristics of high??solid sewage sludge, revised Herschel??Bulkley model was selected according to total solid (rTS) of sludge to simulate flow behavior within digesters reasonably. The effects of sludge type, total solid, the range of shear rate, temperature on the critical shear stress in the flow curve were investigated in the experiments. Anaerobic digested sludge with total solid of 5.2%??15.8% was sheared by employing shear rate sweep ranging from 0.01 s-1 to 1 000 s-1 for steady rheological tests. The results indicate that for the sludge with rTS <8??8%, the flow curve is well fitted by Herschel??Bulkley model. While for the sludge with rTS>8.8%, a critical shear stress appears in the flow curve within the range of 1.10 s-1, and the flow curve is fitted by the revised Herschel??Bulkley model. The critical shear stress is correlated to the total solid and the range of applied shear rate, but not to sludge type, composition, tested temperature or digestion time. The critical shear rate c corresponding to the critical shear stress shows a linear relationship with rTS of digested sludge

References

[1]  [2]ZHANG J, XUE Y, ESHTIAGHI N, et al. Evaluation of thermal hydrolysis efficiency of mechanically dewatered sewage sludge via rheological measurement [J]. Water Research, 2017, 116: 34??43.
[2]  [3]戴晓虎. 我国城镇污泥处理处置现状及思考 [J]. 给水排水, 2012, 38(2): 1??5.
[3]  DAI Xiaohu. Consideration of sludge present situation and disposal of cities and towns in our country [J]. Water & Wastewater Engineering, 2012, 38(2): 1??5.
[4]  DAI Xiaohu, GAI Xin, DONG Bin. Rheological characteristics of sludge in high??solids anaerrobic digestion [J]. Chinese Journal of Environmental Engineering, 2014, 8(9): 3912??3918.
[5]  [14]DAI X, GAI X, DONG B. Rheology evolution of sludge through high??solid anaerobic digestion [J]. Bioresource Technology, 2014, 174: 6??10.
[6]  [15]JIANG J, WU J, PONCIN S, et al. Rheological characterization of digested sludge by solid sphere impact [J]. Bioresource Technology, 2016, 218: 301??306.
[7]  [10]SEYSSIECQ I, FERRASSE J H, ROCHE N. State??of??the??art: rheological characterisation of wastewater treatment sludge [J]. Biochemical Engineering Journal, 2003, 16(1): 41??56.
[8]  [11]BAROUTIAN S, ESHTIAGHI N, GAPES D J. Rheology of a primary and secondary sewage sludge mixture: dependency on temperature and solid concentration [J]. Bioresource Technology, 2013, 140(3): 227??233.
[9]  [12]王远. 污泥厌氧消化流变特性变化规律的研究 [D]. 北京: 北京建筑大学, 2015: 16??23.
[10]  [1]BAUDEZ J C, SLATTER P, ESHTIAGHI N. The impact of temperature on the rheological behaviour of anaerobic digested sludge [J]. Chemical Engineering Journal, 2013, 215: 182??187.
[11]  [16]BAUDEZ J C, COUSSOT P. Rheology of aging, concentrated, polymeric suspensions: application to pasty sewage sludges [J]. Journal of Rheology, 2001, 45(5): 1123??1139.
[12]  [4]孙晓. 高含固率污泥厌氧消化系统的启动方案与实验 [J]. 净水技术, 2012, 31(3): 78??82.
[13]  SUN Xiao. Experiment and start??up solution of anaerobic digestion system for high??solid content sludge [J]. Water Purification Technology, 2012, 31(3): 78??82.
[14]  [5]戴晓虎, 盖鑫, 董滨. 高含固厌氧消化污泥流变特性 [J]. 环境工程学报, 2014, 8(9): 3912??3918.
[15]  [6]MARKIS F, BAUDEZ J C, PARTHASARATHY R, et al. Predicting the apparent viscosity and yield stress of mixtures of primary, secondary and anaerobically digested sewage sludge: simulating anaerobic digesters [J]. Water Research, 2016, 100: 568??579.
[16]  [7]BAYOUDH S, OTHMANE A, MORA L, et al. Assessing bacterial adhesion using DLVO and XDLVO theories and the jet impingement technique [J]. Colloids Surfaces: BBiointerfaces, 2009, 73(1): 1??9.
[17]  [8]FORSTER C F. Bound water in sewage sludges and its relationship to sludge surfaces and sludge viscosities [J]. Journal of Chemical Technology and Biotechnology, 2010, 33(1): 76??84.
[18]  [9]ZHANG J, HAWARD S J, WU Z, et al. Evolution of Rheological characteristics of high??solid municipal sludge during anaerobic digestion [J]. Applied Rheology, 2016, 26(3): 9??18.
[19]  [13]ESHTIAGHI N, MARKIS F, ZAIN D, et al. Predicting the apparent viscosity and yield stress of digested and secondary sludge mixtures [J]. Water Research, 2016, 95: 159??164.
[20]  [17]CHAIGNON V, LARTIGES B S, EI S, et al. Evolution of size distribution and transfer of mineral particles between flocs in activated sludges: an insight into floc exchange dynamics [J]. Water Research, 2002, 36(3): 676??684.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133